Advertisement

Chemical Papers

, Volume 67, Issue 3, pp 284–291 | Cite as

Nutritional, antioxidant, and glycaemic characteristics of new functional bread

  • Lucia MikušováEmail author
  • Petra Gereková
  • Monika Kocková
  • Ernest Šturdík
  • Martina Valachovičová
  • Andrea Holubková
  • Marek Vajdák
  • Ľubomír Mikuš
Original Paper

Abstract

New wheat-rye bread fortified with cereal dietary fibre, β-glucan hydrogel, and sourdough starter culture was designed in this study. The impact of these additives on nutritional composition and antioxidant properties was investigated. Functional bread with extruded wheat bran (10.0 %), cereal β-glucan hydrogel (12.5 %), and lactobacilli starter culture was compared with traditional wheat-rye bread (control). The contents of basic nutrients (protein, fat, etc.), dietary fibre, biologically active compounds (polyphenols and flavonoids), qualitative and quantitative analysis of simple saccharides and phenolic acids (by HPLC) were analysed in both bread types. Antioxidant activity, measured by two spectrophotometric methods (2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid); ABTS and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (2,2-diphenyl-1-picrylhydrasyl); DPPH, was also evaluated. The effect of the addition of the above ingredients, as compared with traditionally prepared bread, was examined in the postprandial study, in which glucose and insulin levels were determined. In comparison with the control bread, higher amounts of dietary fibre, flavonoid content, and antioxidant activity were attained in the designed bread. Consumption of the designed bread led to reduced glucose levels in healthy males (n = 10) 120 min after the ingestion of the functional bread compared with the control (p < 0.048). No statistically significant change in the insulin response in the volunteers was observed after consumption of the designed bread compared with the control.

Keywords

bread cereal β-glucan wheat bran lactobacilli starter culture glucose insulin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brennan, C. S., & Cleary, L. J. (2005). The potential use of cereal (1→3, 1→4)-β-d-glucans as functional food ingredients. Journal of Cereal Science, 42, 1–13. DOI: 10.1016/j.jcs.2005.01.002.CrossRefGoogle Scholar
  2. Brindzová, L., Zalibera, M., Šimon, P., Čertík, M., Takácsová, M., Mikulajová, A., Mikušová, L., & Rapta, P. (2009). Screening of cereal varieties for antioxidant and radical scavenging properties applying various spectroscopic and thermoanalytical methods. International Journal of Food Science & Technology, 44, 784–791. DOI: 10.1111/j.1365-2621.2008.01898.x.CrossRefGoogle Scholar
  3. Cavallero, A., Empilli, S., Brighenti, F., & Stanca, A. M. (2002). High (1→3, 1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. Journal of Cereal Science, 36, 59–66. DOI: 10.1006/jcrs.2002.0454.CrossRefGoogle Scholar
  4. Chillo, S., Ranawana, D. V., Pratt, M., & Henry, C. J. K. (2011). Glycemic response and glycemic index of semolina spaghetti enriched with barley β-glucan. Nutrition, 27, 653–658. DOI: 10.1016/j.nut.2010.07.003.CrossRefGoogle Scholar
  5. Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews, 23, 65–134. DOI: 10.1017/s0954422410000041.CrossRefGoogle Scholar
  6. Fardet, A., Leenhardt, F., Lioger, D., Scalbert, A., & Rémésy, C. (2006). Parameters controlling the glycaemic response to breads. Nutrition Research Reviews, 19, 18–25. DOI: 10.1079/nrr2006118.CrossRefGoogle Scholar
  7. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18, 499–502.Google Scholar
  8. Gajdošová, A., Petruláková, Z., Havrlentová, M., Červená, V., Hozová, B., Šturdík, E., & Kogan, G. (2007). The content of water-soluble and water-insoluble β-d-glucans in selected oats and barley varieties. Carbohydrate Polymers, 70, 46–52. DOI: 10.1016/j.carbpol.2007.03.001.CrossRefGoogle Scholar
  9. Gereková, P., Hybenová, E., Petruláková, Z., Kocková, M., & Valík, Ľ. (2010). Design of starter cultures for preparation of sourdough. In Proceedings of the 5th International Congress Flour-Bread’ 09, October 21–23, 2009 (pp 354–360). Osijek, Croatia: University of Osijek.Google Scholar
  10. Gereková, P., Petruláková, Z., & Šturdík, E. (2011). Importance of lactobacilli for bread-making industry. Acta Chimica Slovaca, 4, 118–135.Google Scholar
  11. Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11, 1365–1402. DOI: 10.3390/ijms11041365.CrossRefGoogle Scholar
  12. Holubková, A., Mikušová, L., & Šturdík, E. (2010). The health benefits of products with whole grain fractions. In Stretnutie mladých vedeckých pracovníkov v potravinárstve, December 2–3, 2010 (pp. 130–144). Gabčíkovo, Slovakia: Slovak University of Technology, Bratislava.Google Scholar
  13. International Organization for Standardization (1998). Starch derivates — Determination of the composition of glucose syrups, fructose syrups and hydrogenated glucose syrups, method using high-performance liquid chromatography. ISO 10504:1998. Geneva, Switzerland.Google Scholar
  14. International Organization for Standardization (2006). Cereals and pulses — Determination of the nitrogen content and calculation of the crude protein content — Kjeldahl method. ISO 20483:2006. Geneva, Switzerland.Google Scholar
  15. International Organization for Standardization (2007). Cereals, pulses and by-products — Determination of ash yield by incineration. ISO 2171:2007. Geneva, Switzerland.Google Scholar
  16. International Organization for Standardization (2008). Cereals and cereal products — Determination of total fat content. ISO 11085:2008. Geneva, Switzerland.Google Scholar
  17. International Organization for Standardization (2009). Cereals and cereal products — Determination of moisture content — Reference method. ISO 712:2009. Geneva, Switzerland.Google Scholar
  18. Katina, K., Arendt, E., Liukkonen, K. H., Autio, K., Flander, L., & Poutanen, K. (2005). Potential of sourdough for healthier cereal products. Trends in Food Science & Technology, 16, 104–112. DOI: 10.1016/j.tifs.2004.03.008.CrossRefGoogle Scholar
  19. Kocková, M., Gereková, P., Petruláková, Z., Hybenová, E., Šturdík, E., & Valík, Ľ. (2011). Evaluation of fermentation properties of lactic acid bacteria isolated from sourdough. Acta Chimica Slovaca, 4, 78–87.Google Scholar
  20. Mikušová, L., Šturdík, E., & Holubková, A. (2011). Whole grain cereal food in prevention of obesity. Acta Chimica Slovaca, 4, 95–114.Google Scholar
  21. Mošovská, S., Mikulášvá, M., Brindzová, L., Valík, Ľ., & Mikušová, L. (2010). Genotoxic and antimutagenic activities of extracts from pseudocereals in the Salmonella mutagenicity assay. Food and Chemical Toxicology, 48, 1483–1487. DOI: 10.1016/j.fct.2010.03.015.CrossRefGoogle Scholar
  22. Ostman, E., Rossi, E., Larsson, H., Brighenti, F., & Bjorck, I. (2006). Glucose and insulin responses in healthy men to barley bread with different levels of (1→3;1→4)-β-glucans; predictions using fluidity measurements of in vitro enzyme digests. Journal of Cereal Science, 43, 230–235. DOI: 10.1016/j.jcs.2005.11.001.CrossRefGoogle Scholar
  23. Papathanasopoulos, A., & Camilleri, M. (2010). Dietary fiber supplements: Effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology, 138, 65–72. DOI: 10.1053/j.gastro.2009.11.045.CrossRefGoogle Scholar
  24. Parker, B. A., Sturm, K., MacIntosh, C. G., Feinle, C., Horowitz, M., & Chapman, I. M. (2004). Relation between food intake and visual analogue scale ratings of appetite and other sensations in healthy older and young subjects. European Journal of Clinical Nutrition, 58, 212–218. DOI: 10.1038/sj.ejcn.1601768.CrossRefGoogle Scholar
  25. Petruláková, Z., Hybenová, E., Mikušová, L., Gereková, P., Kocková, M., & Šturdík, E. (2009). The effect of lactobacilli starter culture on quality of bread. Acta Chimica Slovaca, 2, 120–128.Google Scholar
  26. Poutanen, K., Flander, L., & Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology, 26, 693–699. DOI: 10.1016/j.fm.2009.07.011.CrossRefGoogle Scholar
  27. Rizzello, C. G., Nionelli, L., Coda, R., De Angelis, M., & Gobbetti, M. (2010). Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chemistry, 119, 1079–1089. DOI: 10.1016/j.foodchem.2009.08.016.CrossRefGoogle Scholar
  28. Sivam, A. S., Sun-Waterhouse, D., Quek, S. Y., & Perera, C. O. (2010). Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: a review. Journal of Food Science, 75, R163–R174. DOI: 10.1111/j.1750-3841.2010.01815.x.CrossRefGoogle Scholar
  29. Slavin, J. L., Jacobs, D., Marquart, L., & Wiemer, K. (2001). The role of whole grains in disease prevention. Journal of the American Dietetic Association, 101, 780–785. DOI: 10.1016/s0002-8223(01)00194-8.CrossRefGoogle Scholar
  30. Slovak Standards Institute (1999). Slovak Technical Standard: Agricultural and food products. Determination of dietary fibre. STN 560031. Bratislava, Slovakia.Google Scholar
  31. Smith, C. E., & Tucker, K. L. (2011). Health benefits of cereal fibre: a review of clinical trials. Nutrition Research Reviews, 24, 118–131. DOI: 10.1017/s0954422411000023.CrossRefGoogle Scholar
  32. Thondre, P. S., Ryan, L., & Henry, C. J. K. (2011). Barley β-glucan extracts as rich sources of polyphenols and antioxidants. Food Chemistry, 126, 72–77. DOI: 10.1016/j.foodchem.2010.10.074.CrossRefGoogle Scholar
  33. Vitaglione, P., Lumaga, R. B., Stanzione, A., Scalfi, L., & Fogliano, V. (2009). β-glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term. Appetite, 53, 338–344. DOI: 10.1016/j.appet.2009.07.013.CrossRefGoogle Scholar
  34. Willis, H. J., Thomas, W., Eldridge, A. L., Harkness, L., Green, H., & Slavin, J. L. (2011). Glucose and insulin do not decrease in a dose-dependent manner after increasing doses of mixed fibers that are consumed in muffins for breakfast. Nutrition Research, 31, 42–47. DOI: 10.1016/j.nutres.2010.12.006.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Lucia Mikušová
    • 1
    Email author
  • Petra Gereková
    • 1
  • Monika Kocková
    • 1
  • Ernest Šturdík
    • 2
  • Martina Valachovičová
    • 3
  • Andrea Holubková
    • 1
  • Marek Vajdák
    • 4
  • Ľubomír Mikuš
    • 1
  1. 1.Department of Nutrition and Food Assessment, Institute of Biochemistry, Nutrition, and Health Protection, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  2. 2.Department of BiotechnologyUniversity of Ss. Cyril and MethodiusTrnavaSlovakia
  3. 3.Slovak Medical UniversityBratislavaSlovakia
  4. 4.Amylum SlovakiaBolerázSlovakia

Personalised recommendations