Skip to main content
Log in

Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Partition coefficients between environmental compartments are essential parameters in any predictive models on pollutants’ fate in various emission scenarios. When sufficient experimental data are not available, empirical algebraic models are capable of predicting the pollutant partitioning characteristics based on bulk physico-chemical properties or various molecular structural features. When the use of sophisticated rules based on detailed 2D–3D molecular descriptors is not available as a quick option, inexpensive, simple correlations based solely on octanol-1-ol (octanol)-water partition coefficients (K ow) are extensively employed. The present study investigates enhancing the adequacy of such hydrophobicity-based models by adding simple 1D descriptors, readily identifiable by inspecting the substance structure (i.e. the number of chlorine atoms bound to aromatic rings, or the number of aromatic 5- or 6-atom rings, etc.), in addition to the pollutant’s solubility in water. Exemplification is made for predicting the water-biota (fish)-sediment partition coefficients for chlorobenzenes (CBz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Society for Testing and Materials (1984). Standard practice for conducting bioconcentration test with fishes and salt-water bi-valve mollusk. ASTM E-1022-84. West Conshohocken, PA, USA.

  • American Society for Testing and Materials (2001). Standard test methods for determining a sorption constant (Koc) for an organic chemical in soil and sediments. ASTM E-1195-01. West Conshohocken, PA, USA.

  • Axelman, J., Broman, D., Näf, C., & Pettersen, H. (1995). Compound dependence of the relationship log Kow and log BCFL. A comparison between chlorobenzenes (CBs) for rainbow trout and polycyclic aromatic hydrocarbons (PAHs) for Daphnia. Environmental Science and Pollution Research, 2, 33–36. DOI: 10.1007/bf02987509.

    Article  CAS  Google Scholar 

  • Bahadur, N. P., Shiu, W. Y., Boocock, D. G. B., & Mackay, D. (1997). Temperature dependence of octanol-water partition coefficient for selected chlorobenzenes. Journal of Chemical & Engineering Data, 42, 685–688. DOI: 10.1021/je970020p.

    Article  CAS  Google Scholar 

  • Barber, M. C. (2003). A review and comparison of models for predicting dynamic chemical bioconcentration in fish. Environmental Toxicology and Chemistry, 22, 1963–1992. DOI: 10.1897/02-468.

    Article  CAS  Google Scholar 

  • Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications. New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Chiriac, A., Ciubotaru, D., & Simon, Z. (1996). Relaţii cantitative structură cimică — activitate biologică (QSAR). Timişoara, Romania: Mirton Publ.

    Google Scholar 

  • Djohan, D., Yu, Q., & Connell, D. W. (2005). Partition isotherms of chlorobenzenes in a sediment-water system. Water Air, & Soil Pollution, 161, 157–173. DOI: 10.1007/s11270-005-2993-8.

    Article  CAS  Google Scholar 

  • Devillers, J., Bintein, S., & Domine, D. (1996). Comparison of BCF models based on log P. Chemosphere, 33, 1047–1065. DOI: 10.1016/0045-6535(96)00246-9.

    Article  CAS  Google Scholar 

  • Gramatica, P., Giani, E., & Papa, E. (2007). Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. Journal of Molecular Graphics and Modelling, 25, 755–766. DOI: 10.1016/j.jmgm.2006.06.005.

    Article  CAS  Google Scholar 

  • Hester, R. E., & Harrison, R. M. (1996). Chlorinated organic micropollutants. Cambridge, UK: The Royal Society of Chemistry, Thomas Graham House.

    Google Scholar 

  • Mackay, D. (1982). Correlation of bioconcentration factors. Environmental Sciience & Technology, 16, 274–278. DOI: 10.1021/es00099a008.

    Article  CAS  Google Scholar 

  • Mackay, D. (2001). Multimedia environmental models. The fugacity approach. Boca Raton, FL, USA: CRC Press.

    Book  Google Scholar 

  • Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110, 375–391. DOI: 10.1016/s0269-7491(00)00162-7.

    Article  CAS  Google Scholar 

  • Maria, G. (2004). A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chemical and Biochemical Engineering Quarterly, 18, 195–222.

    CAS  Google Scholar 

  • Maria, G., & Rippin, D. W. T. (1993). Note concerning two techniques for complex kinetic pathway analysis. Chemical Engineering Science, 48, 3855–3864. DOI: 10.1016/0009-2509(93)80228-i.

    Article  CAS  Google Scholar 

  • Maria, G., & Maria, C. (2006). Evaluation of risk zones over a river pathway, downstream a release point, under seasonal pollutant biodegradability. Chemical and Biochemical Engineering Quarterly, 20, 333–342.

    CAS  Google Scholar 

  • Maria, C., & Maria, G. (2008). Prediction of dispersion and bioaccumulation of chlorinated benzene pollutants in a river section for a low level of discharge. Revista de Chimie, 59, 1122–1131.

    CAS  Google Scholar 

  • Maria, G., & Maria, C. (2009). Bioaccumulation dynamics of a PCB low-level discharge in a riverine pathway downstream the release point. Chemical and Biochemical Engineering Quarterly, 23, 121–134.

    CAS  Google Scholar 

  • MathWorks (2002). Statistics toolbox for use with Matlab. User’s guide (Version 4). Natick, MA, USA: MathWorks, Inc. Retreived July 15, 2012, from http://www.mathworks.com/help/releases/R13sp2/pdfdoc/stats/stats.pdf

    Google Scholar 

  • McCarty, L. S., Dixon, D. G., Ozburn, G. W., & Smith, A. D. (1992). Toxicokinetic modeling of mixtures of organic chemicals. Environmental Toxicology and Chemistry, 11, 1037–1047. DOI: 10.1002/etc.5620110716.

    Article  CAS  Google Scholar 

  • Merck (2007). ChemDAT Merck database, München, Germany: Merck.

    Google Scholar 

  • Middleton, G. V. (2000). Data analysis in the Earth sciences using Matlab. New Jersey, NJ, USA: Prentice Hall.

    Google Scholar 

  • SPAWAR Systems Center (2006). Ex-ORISKANY artificial reef project. San Diego, CA, USA: Space and Naval Warfare Systems Center.

    Google Scholar 

  • NRCG (2001). Report on hydrological (pollutant dispersion) models. Petten, The Netherlands: Nuclear Research & Consultancy Group.

    Google Scholar 

  • OECD (1996). OECD guidelines for the testing of chemicals. Bioconcentration: Flow-through fish test. 305. Paris, France.

  • Papa, E., Dearden, J. C., & Gramatica, P. (2007). Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere, 67, 351–358. DOI: 10.1016/j.chemosphere.2006.09.079.

    Article  CAS  Google Scholar 

  • Ramaswami, A., Milford, J. B., & Small, M. J. (2005). Integrated environmental modelling. Pollutant transport, fate, and risk in the environment. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Shiu, W. Y., Wania, F., Hung, H., & Mackay, D. (1997). Temperature dependence of aqueous solubility of selected chlorobenzenes, polychlorinated biphenyls, and dibenzofuran. Journal of Chemical & Engineering Data, 42, 293–297. DOI: 10.1021/je960299u.

    Article  CAS  Google Scholar 

  • Sigma-Aldrich (2010). Safety data sheet. Technical services. Retrieved July 20, 2012, from http://www.sigmaaldrich.com/catalog/AdvancedSearchPage.do

  • TOXNET (2011). Hazardous substances data bank (HSDB). Retrieved December 10, 2011, from http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

  • University of Akron (2010). The chemical database. Retrieved July 15, 2012, from 〈http://ull.chemistry.uakron.edu/erd/

  • US EPA (2011). Soil screening guidance: Fact sheet. EPA/540/F-95/041. Washington, DC, USA: US Environmental Protection Agency.

    Google Scholar 

  • van Leeuwen, C. J., & Vermeire, T. G. (2007). Risk assessment of chemicals: An introduction. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Van Wijk, D., Thompson, R. S., De Rooij, C., Garny, V., Lecloux, A., & Kanne, R. (2004). 1,2-dichlorobenzene marine risk assessment with special reference to the Osparcom region: North Sea. Environmental Monitoring and Assessment, 97, 87–102. DOI: 10.1023/b:emas.0000033043.73470.98.

    Article  Google Scholar 

  • Verloop, A., Hoogenstraaten, W., & Tipker, J. (1976). Development and application of new steric substituent parameters in drug design. In E. J. Ariens (Ed.), Drug design (pp. 165–207). New York, NY, USA: Academic Press.

    Google Scholar 

  • Verschueren, K. (2001). Handbook of environmental data on organic chemicals. New York, NY, USA: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Maria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maria, C., Tociu, C. & Maria, G. Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study. Chem. Pap. 67, 173–185 (2013). https://doi.org/10.2478/s11696-012-0257-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0257-9

Keywords

Navigation