Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 173–185 | Cite as

Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study

  • Cristina Maria
  • Carmen Tociu
  • Gheorghe MariaEmail author
Original Paper
  • 86 Downloads

Abstract

Partition coefficients between environmental compartments are essential parameters in any predictive models on pollutants’ fate in various emission scenarios. When sufficient experimental data are not available, empirical algebraic models are capable of predicting the pollutant partitioning characteristics based on bulk physico-chemical properties or various molecular structural features. When the use of sophisticated rules based on detailed 2D–3D molecular descriptors is not available as a quick option, inexpensive, simple correlations based solely on octanol-1-ol (octanol)-water partition coefficients (K ow) are extensively employed. The present study investigates enhancing the adequacy of such hydrophobicity-based models by adding simple 1D descriptors, readily identifiable by inspecting the substance structure (i.e. the number of chlorine atoms bound to aromatic rings, or the number of aromatic 5- or 6-atom rings, etc.), in addition to the pollutant’s solubility in water. Exemplification is made for predicting the water-biota (fish)-sediment partition coefficients for chlorobenzenes (CBz).

Keywords

water-biota partition coefficients water-sediment partition coefficients empirical correlations chlorobenzenes 1D molecular descriptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Society for Testing and Materials (1984). Standard practice for conducting bioconcentration test with fishes and salt-water bi-valve mollusk. ASTM E-1022-84. West Conshohocken, PA, USA.Google Scholar
  2. American Society for Testing and Materials (2001). Standard test methods for determining a sorption constant (Koc) for an organic chemical in soil and sediments. ASTM E-1195-01. West Conshohocken, PA, USA.Google Scholar
  3. Axelman, J., Broman, D., Näf, C., & Pettersen, H. (1995). Compound dependence of the relationship log Kow and log BCFL. A comparison between chlorobenzenes (CBs) for rainbow trout and polycyclic aromatic hydrocarbons (PAHs) for Daphnia. Environmental Science and Pollution Research, 2, 33–36. DOI: 10.1007/bf02987509.CrossRefGoogle Scholar
  4. Bahadur, N. P., Shiu, W. Y., Boocock, D. G. B., & Mackay, D. (1997). Temperature dependence of octanol-water partition coefficient for selected chlorobenzenes. Journal of Chemical & Engineering Data, 42, 685–688. DOI: 10.1021/je970020p.CrossRefGoogle Scholar
  5. Barber, M. C. (2003). A review and comparison of models for predicting dynamic chemical bioconcentration in fish. Environmental Toxicology and Chemistry, 22, 1963–1992. DOI: 10.1897/02-468.CrossRefGoogle Scholar
  6. Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications. New York, NY, USA: Wiley.CrossRefGoogle Scholar
  7. Chiriac, A., Ciubotaru, D., & Simon, Z. (1996). Relaţii cantitative structură cimică — activitate biologică (QSAR). Timişoara, Romania: Mirton Publ.Google Scholar
  8. Djohan, D., Yu, Q., & Connell, D. W. (2005). Partition isotherms of chlorobenzenes in a sediment-water system. Water Air, & Soil Pollution, 161, 157–173. DOI: 10.1007/s11270-005-2993-8.CrossRefGoogle Scholar
  9. Devillers, J., Bintein, S., & Domine, D. (1996). Comparison of BCF models based on log P. Chemosphere, 33, 1047–1065. DOI: 10.1016/0045-6535(96)00246-9.CrossRefGoogle Scholar
  10. Gramatica, P., Giani, E., & Papa, E. (2007). Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. Journal of Molecular Graphics and Modelling, 25, 755–766. DOI: 10.1016/j.jmgm.2006.06.005.CrossRefGoogle Scholar
  11. Hester, R. E., & Harrison, R. M. (1996). Chlorinated organic micropollutants. Cambridge, UK: The Royal Society of Chemistry, Thomas Graham House.Google Scholar
  12. Mackay, D. (1982). Correlation of bioconcentration factors. Environmental Sciience & Technology, 16, 274–278. DOI: 10.1021/es00099a008.CrossRefGoogle Scholar
  13. Mackay, D. (2001). Multimedia environmental models. The fugacity approach. Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
  14. Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110, 375–391. DOI: 10.1016/s0269-7491(00)00162-7.CrossRefGoogle Scholar
  15. Maria, G. (2004). A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chemical and Biochemical Engineering Quarterly, 18, 195–222.Google Scholar
  16. Maria, G., & Rippin, D. W. T. (1993). Note concerning two techniques for complex kinetic pathway analysis. Chemical Engineering Science, 48, 3855–3864. DOI: 10.1016/0009-2509(93)80228-i.CrossRefGoogle Scholar
  17. Maria, G., & Maria, C. (2006). Evaluation of risk zones over a river pathway, downstream a release point, under seasonal pollutant biodegradability. Chemical and Biochemical Engineering Quarterly, 20, 333–342.Google Scholar
  18. Maria, C., & Maria, G. (2008). Prediction of dispersion and bioaccumulation of chlorinated benzene pollutants in a river section for a low level of discharge. Revista de Chimie, 59, 1122–1131.Google Scholar
  19. Maria, G., & Maria, C. (2009). Bioaccumulation dynamics of a PCB low-level discharge in a riverine pathway downstream the release point. Chemical and Biochemical Engineering Quarterly, 23, 121–134.Google Scholar
  20. MathWorks (2002). Statistics toolbox for use with Matlab. User’s guide (Version 4). Natick, MA, USA: MathWorks, Inc. Retreived July 15, 2012, from http://www.mathworks.com/help/releases/R13sp2/pdfdoc/stats/stats.pdf Google Scholar
  21. McCarty, L. S., Dixon, D. G., Ozburn, G. W., & Smith, A. D. (1992). Toxicokinetic modeling of mixtures of organic chemicals. Environmental Toxicology and Chemistry, 11, 1037–1047. DOI: 10.1002/etc.5620110716.CrossRefGoogle Scholar
  22. Merck (2007). ChemDAT Merck database, München, Germany: Merck.Google Scholar
  23. Middleton, G. V. (2000). Data analysis in the Earth sciences using Matlab. New Jersey, NJ, USA: Prentice Hall.Google Scholar
  24. SPAWAR Systems Center (2006). Ex-ORISKANY artificial reef project. San Diego, CA, USA: Space and Naval Warfare Systems Center.Google Scholar
  25. NRCG (2001). Report on hydrological (pollutant dispersion) models. Petten, The Netherlands: Nuclear Research & Consultancy Group.Google Scholar
  26. OECD (1996). OECD guidelines for the testing of chemicals. Bioconcentration: Flow-through fish test. 305. Paris, France.Google Scholar
  27. Papa, E., Dearden, J. C., & Gramatica, P. (2007). Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere, 67, 351–358. DOI: 10.1016/j.chemosphere.2006.09.079.CrossRefGoogle Scholar
  28. Ramaswami, A., Milford, J. B., & Small, M. J. (2005). Integrated environmental modelling. Pollutant transport, fate, and risk in the environment. Hoboken, NJ, USA: Wiley.Google Scholar
  29. Shiu, W. Y., Wania, F., Hung, H., & Mackay, D. (1997). Temperature dependence of aqueous solubility of selected chlorobenzenes, polychlorinated biphenyls, and dibenzofuran. Journal of Chemical & Engineering Data, 42, 293–297. DOI: 10.1021/je960299u.CrossRefGoogle Scholar
  30. Sigma-Aldrich (2010). Safety data sheet. Technical services. Retrieved July 20, 2012, from http://www.sigmaaldrich.com/catalog/AdvancedSearchPage.do
  31. TOXNET (2011). Hazardous substances data bank (HSDB). Retrieved December 10, 2011, from http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
  32. University of Akron (2010). The chemical database. Retrieved July 15, 2012, from 〈http://ull.chemistry.uakron.edu/erd/
  33. US EPA (2011). Soil screening guidance: Fact sheet. EPA/540/F-95/041. Washington, DC, USA: US Environmental Protection Agency.Google Scholar
  34. van Leeuwen, C. J., & Vermeire, T. G. (2007). Risk assessment of chemicals: An introduction. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  35. Van Wijk, D., Thompson, R. S., De Rooij, C., Garny, V., Lecloux, A., & Kanne, R. (2004). 1,2-dichlorobenzene marine risk assessment with special reference to the Osparcom region: North Sea. Environmental Monitoring and Assessment, 97, 87–102. DOI: 10.1023/b:emas.0000033043.73470.98.CrossRefGoogle Scholar
  36. Verloop, A., Hoogenstraaten, W., & Tipker, J. (1976). Development and application of new steric substituent parameters in drug design. In E. J. Ariens (Ed.), Drug design (pp. 165–207). New York, NY, USA: Academic Press.Google Scholar
  37. Verschueren, K. (2001). Handbook of environmental data on organic chemicals. New York, NY, USA: Wiley.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  1. 1.National Institute for Research and Development in Environmental ProtectionBucharestRomania
  2. 2.Department of Chemical & Biochemical EngineeringUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations