Chemical Papers

, Volume 67, Issue 2, pp 213–220 | Cite as

Calorimetric determination of the effect of additives on cement hydration process

  • Pavel ŠilerEmail author
  • Josef Krátký
  • Iva Kolářová
  • Jaromír Havlica
  • Jiří Brandštetr
Original Paper


Possibilities of a multicell isoperibolic-semiadiabatic calorimeter application for the measurement of hydration heat and maximum temperature reached in mixtures of various compositions during their setting and early stages of hardening are presented. Measurements were aimed to determine the impact of selected components’ content on the course of ordinary Portland cement (OPC) hydration. The following components were selected for the determination of the hydration behaviour in mixtures: very finely ground granulated blast furnace slag (GBFS), silica fume (microsilica, SF), finely ground quartz sand (FGQ), and calcined bauxite (CB). A commercial polycarboxylate type superplasticizer was also added to the selected mixtures. All maximum temperatures measured for selected mineral components were lower than that reached for cement. The maximum temperature increased with the decreasing amount of components in the mixture for all components except for silica fume. For all components, except for CB, the values of total released heat were higher than those for pure Portland cement samples.


calorimetry cement admixtures additives hydration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baert, G., Hoste, S., De Schutter, G., & De Belie, N. (2008). Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. Journal of Thermal Analysis and Calorimetry, 94, 485–492. DOI: 10.1007/s10973-007-8787-z.CrossRefGoogle Scholar
  2. Brandštetr, J., Polcer, J., Krátký, J., Holešinský, R., & Havlica, J. (2001). Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cement and Concrete Research, 31, 941–947. DOI: 10.1016/s0008-8846(01)00495-1.CrossRefGoogle Scholar
  3. Duchesne, J., & Reardon, E. J. (1995). Measurement and prediction of portlandite solubility in alkali solutions. Cement and Concrete Research, 25, 1043–1053. DOI: 10.1016/0008-8846(95)00099-x.CrossRefGoogle Scholar
  4. European Committee for Standardization (2003). European standard: Methods of testing cement — Part 8: Heat of hydration — Solution method. EN 196-8:2003 E. Brussels, Belgium.Google Scholar
  5. European Committee for Standardization (2010). European standard: Methods of testing cement — Part 9: Heat of hydration — Semi-adiabatic method. EN 196-9:2010 E. Brussels, Belgium.Google Scholar
  6. Erdem, T. K., & Kirca, Ö. (2008). Use of binary and ternary blends in high strength concrete. Construction and Building Materials, 22, 1477–1483. DOI:10.1016/j.conbuildmat.2007.03.026.CrossRefGoogle Scholar
  7. Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38, 226–246. DOI:10.1016/j.cemconres.2007.09.015.CrossRefGoogle Scholar
  8. Gruyaert, E., Robeyst, N., & De Belie, N. (2008). Modelling the hydration heat of Portland cement blended with blastfurnace slag. In Non-traditional cement and concrete III, June 10–12, 2008 (pp. 302–311). Brno, Czech Republic: Brno University of Technology.Google Scholar
  9. Gruyaert, E., Robeyst, N., & De Belie, N. (2010). Study of the hydration of Portland cement blended with blastfurnace slag by calorimetry and thermogravimetry. Journal of Thermal Analysis and Calorimetry, 102, 941–951. DOI: 10.1007/s10973-010-0841-6.CrossRefGoogle Scholar
  10. Guan, B., Ye, Q., Zhang, J., Lou, W., & Wu, Z. (2010). Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process. Cement and Concrete Research, 40, 253–259. DOI:10.1016/j.cemconres.2009.08.027.CrossRefGoogle Scholar
  11. Habert, G., Choupay, N., Montel, J. M., Guillaume, D., & Escadeillas, G. (2008). Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 38, 963–975. DOI:10.1016/j.cemconres.2008.02.005.CrossRefGoogle Scholar
  12. Ježo, Ľ., Palou, M., Kozánková, J., & Ifka, T. (2010). Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. Journal of Thermal Analysis and Calorimetry, 101, 585–593. DOI: 10.1007/s10973-010-0849-y.CrossRefGoogle Scholar
  13. Khatib, J. M. (2008). Metakaolin concrete at a low water to binder ratio. Construction and Building Materials, 22, 1691–1700. DOI:10.1016/j.conbuildmat.2007.06.003.CrossRefGoogle Scholar
  14. Korpa, A., Kowald, T., & Trettin, R. (2008). Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cement and Concrete Research, 38, 955–962. DOI:10.1016/j.cemconres.2008.02.010.CrossRefGoogle Scholar
  15. Krátký, J. (2004). Vliv přísad na vlastnosti anorganicko organických kompozitů. Unpublished PhD. thesis, Brno University of Technology, Brno, Czech Republic.Google Scholar
  16. Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29, 505–514. DOI:10.1016/j.cemconcomp.2007.01.001.CrossRefGoogle Scholar
  17. Pane, I., & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research, 35, 1155–1164. DOI:10.1016/j.cemconres.2004.10.027.CrossRefGoogle Scholar
  18. Rahhal, V., & Talero, R. (2009). Calorimetry of Portland cement with silica fume, diatomite and quartz additions. Construction and Building Materials, 23, 3367–3374. DOI:10.1016/j.conbuildmat.2009.06.003.CrossRefGoogle Scholar
  19. Siler, P., Kratky, J., & De Belie, N. (2012). Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. Journal of Thermal Analysis and Calorimetry, 107, 313–320. DOI: 10.1007/s10973-011-1479-8.CrossRefGoogle Scholar
  20. Simard, M. A., Nkinamubanzi, P. C., Jolicoeur, C., Perraton, D., & Aïtcin, P. C. (1993). Calorimetry, rheology and compressive strength of superplasticized cement pastes. Cement and Concrete Research, 23, 939–950. DOI: 10.1016/0008-8846(93)90048-e.CrossRefGoogle Scholar
  21. Sleiman, H., Perrot, A., & Amziane, S. (2010). A new look at the measurement of cementitious paste setting by Vicat test. Cement and Concrete Research, 40, 681–686. DOI:10.1016/j.cemconres.2009.12.001.CrossRefGoogle Scholar
  22. Vessalas, K., Thomas, P. S., Ray, A. S., Guerbois, J. P., Joyce, P., & Haggman, J. (2009). Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 97, 71–76. DOI: 10.1007/s10973-008-9708-5.CrossRefGoogle Scholar
  23. Wild, S., & Khatib, J. M. (1997). Portlandite consumption in metakaolin cement pastes and mortars. Cement and Concrete Research, 27, 137–146. DOI: 10.1016/s0008-8846(96)00187-1.CrossRefGoogle Scholar
  24. Yamada, K. (2011). Basics of analytical methods used for the investigation of interaction mechanism between cements and superplasticizers. Cement and Concrete Research, 41, 793–798. DOI:10.1016/j.cemconres.2011.03.007.CrossRefGoogle Scholar
  25. Zingg, A., Holzer, L., Kaech, A., Winnefeld, F., Pakusch, J., Becker, S., & Gauckler, L. (2008). The microstructure of dispersed and non-dispersed fresh cement pastes — new insight by cryo-microscopy. Cement and Concrete Research, 38, 522–529. DOI:10.1016/j.cemconres.2007.11.007.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Pavel Šiler
    • 1
    Email author
  • Josef Krátký
    • 1
  • Iva Kolářová
    • 1
  • Jaromír Havlica
    • 1
  • Jiří Brandštetr
    • 1
  1. 1.Centrum for Materials Research, Project ERDF CZ.1.05/2.1.00/01.0012, Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic

Personalised recommendations