Chemical Papers

, Volume 67, Issue 2, pp 202–212 | Cite as

Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution

  • Demet ÖzkırEmail author
  • Emel Bayol
  • A. Ali Gürten
  • Yavuz Sürme
  • Fatma Kandemirli
Original Paper


The electrochemical behaviours of a brass alloy in 0.1 M nitric acid, including the hyamine inhibitor with concentrations between 2.5 × 10−4 M and 1.0 × 10−5 M, were studied. For this purpose, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR) techniques, and flame atomic absorption spectroscopy (FAAS) were utilised. The inhibitor molecules adsorbed on the brass surface were calculated to be in good agreement with the Langmuir adsorption isotherm and the standard free enthalpy of adsorption (ΔG ads ). Hyamine effectively improved the corrosion inhibition of brass and acted as a mixed-type inhibitor on alloy surfaces. The surface morphology of the alloy was also clarified by optical microscopic and SEM techniques. A theoretical study of the corrosion inhibition efficiency of hyamine molecule was carried out using density functional theory (DFT) at the B3LYP/6-311G(d,p) basis set level.


electrochemical techniques computational techniques dezincification acid corrosion inhibitor brass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abboud, Y., Abourriche, A., Saffaj, T., Berrada, M., Charrouf, M., Bennamara, A., & Hannache, H. (2009). A novel azo dye, 8-quinolinol-5-azoantipyrine as corrosion inhibitor for mild steel in acidic media. Desalination, 237, 175–189. DOI:10.1016/j.desal.2007.12.031.CrossRefGoogle Scholar
  2. Abdallah, M., Al-Agez, M., & Fouda, A. S. (2009). Phenylhydrazone derivatives as corrosion inhibitors for -α-brass in hydrochloric acid solutions. International Journal of Electrochemical Science, 4, 336–352.Google Scholar
  3. Abd El Meguid, E. A., & Awad, N. K. (2009). Electrochemical pitting corrosion behaviour of α-brass in LiBr containing solutions. Corrosion Science, 51, 1134–1139. DOI: 10.1016/j.corsci.2009.02.019.CrossRefGoogle Scholar
  4. Abed, Y., Kissi, M., Hammouti, B., Taleb, M., & Kertit, S. (2004). Peptidic compound as corrosion inhibitor for brass in nitric acid solution. Progress in Organic Coatings, 50, 144–147. DOI:10.1016/j.porgcoat.2004.02.001.CrossRefGoogle Scholar
  5. Ahamad, I., Prasad, R., & Quraishi, M. A. (2010). Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science, 52, 1472–1481. DOI:10.1016/j.corsci.2010.01.015.CrossRefGoogle Scholar
  6. Alfantazi, A. M., Ahmed, T. M., & Tromans, D. (2009). Corrosion behavior of copper alloys in chloride media. Materials & Design, 30, 2425–2430. DOI:10.1016/j.matdes.2008.10.015.CrossRefGoogle Scholar
  7. Aljourani, J., Raeissi, K., & Golozar, M. A. (2009). Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corrosion Science, 51, 1836–1843. DOI:10.1016/j.corsci.2009.05.011.CrossRefGoogle Scholar
  8. Aljourani, J., Golozar, M. A., & Raeissi, K. (2010). The inhibition of carbon steel corrosion in hydrochloric and sulfuric acid media using some benzimidazole derivatives. Materials Chemistry and Physics, 121, 320–325. DOI: 10.1016/j.matchemphys.2010.01.040.CrossRefGoogle Scholar
  9. Allam, N. K. (2007). Thermodynamic and quantum chemistry characterization of the adsorption of triazole derivatives during Muntz corrosion in acidic and neutral solutions. Applied Surface Science, 253, 4570–4577. DOI:10.1016/j.apsusc.2006.10.008.CrossRefGoogle Scholar
  10. Asefi, D., Arami, M., & Mahmoodi, N. M. (2010). Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium. Corrosion Science, 52, 794–800. DOI:10.1016/j.corsci.2009.10.039.CrossRefGoogle Scholar
  11. Bayol, E., Kayakırılmaz, K., & Erbil, M. (2007). The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel. Materials Chemistry and Physics, 104, 74–82. DOI:10.1016/j.matchemphys.2007.02.073.CrossRefGoogle Scholar
  12. Bayol, E., Gürten, T., Gürten, A. A., & Erbil, M. (2008). Interactions of some Schiff base compounds with mild steel surface in hydrochloric acid solution. Materials Chemistry and Physics, 112, 624–630. DOI:10.1016/j.matchemphys.2008.06.012.CrossRefGoogle Scholar
  13. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  14. Behpour, M., Ghoreishi, S. M., Soltani, N., & Salavati-Niasari, M. (2009). The inhibitive effect of some bis-N,S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution. Corrosion Science, 51, 1073–1082. DOI:10.1016/j.corsci.2009.02.011.CrossRefGoogle Scholar
  15. Elayyachy, M., Elkodadi, M., Aouniti, A., Ramdani, A., Hammouti, B., Malek, F., & Elidrissi, A. (2005). New bipyrazole derivatives as corrosion inhibitors for steel in hydrochloric acid solutions. Materials Chemistry and Physics, 93, 281–285. DOI:10.1016/j.matchemphys.2005.03.059.CrossRefGoogle Scholar
  16. Erbil, M. (1988). The determination of corrosion rates by analysis of AC impedance diagrams. Chimica Acta Turcica, 1, 59–70.Google Scholar
  17. Fontana, M. G., & Greene, N. D. (1967). Corrosion engineering (pp. 270). New York, NY, USA: McGraw-Hill.Google Scholar
  18. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09, Revision A.1 [computer software]. Wallingford, CT, USA: Gaussian.Google Scholar
  19. Fuchs-Godec, R. (2006). The adsorption, CMC determination and corrosion inhibition of some N-alkyl quaternary ammonium salts on carbon steel surface in 2 M H2SO4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280, 130–139. DOI:10.1016/j.colsurfa.2006.01.046.CrossRefGoogle Scholar
  20. Fuchs-Godec, R. (2007). Inhibitory effect of non-ionic surfactants of the TRITON-X series on the corrosion of carbon steel in sulphuric acid. Electrochimica Acta, 52, 4974–4981. DOI:10.1016/j.electacta.2007.01.075.CrossRefGoogle Scholar
  21. Gao, G., & Liang, C. H. (2007). 1,3-Bis-diethylamino-propan-2-ol as volatile corrosion inhibitor for brass. Corrosion Science, 49, 3479–3493. DOI:10.1016/j.corsci.2007.03.030.CrossRefGoogle Scholar
  22. Herrag, L., Hammouti, B., Elkadiri, S., Aouniti, A., Jama, C., Vezin, H., & Bentiss, F. (2010). Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corrosion Science, 52, 3042–3051. DOI:10.1016/j.corsci.2010.05.024.CrossRefGoogle Scholar
  23. Horton, R. M. (1970). New metallographic evidence for dezincification of brass by redisposition of copper. Corrosion, 26, 160–163.Google Scholar
  24. Kılınççeker, G. (2008). The effects of acetate ions on electrochemical behaviour of brass in chloride solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329, 112–118. DOI:10.1016/j.colsurfa.2008.07.002.CrossRefGoogle Scholar
  25. Langenegger, E. E., & Robinson, F. P. A. (1968). Effect of the polarization technique on dezincification rates and the physical structure of dezincified zones. Corrosion-NACE, 24, 411–417.Google Scholar
  26. Langenegger, E. E., & Robinson, F. P. A. (1969). A study of the mechanism of dezincification of brasses. Corrosion-NACE, 25, 59–66.Google Scholar
  27. Li, X. H., Deng, S. D., Fu, H., & Li, T. H. (2009). Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl. Electrochimica Acta, 54, 4089–4098. DOI:10.1016/j.electacta.2009.02.084.CrossRefGoogle Scholar
  28. Mahmoud, S. S. (2007). Corrosion inhibition of Cu-Fe alloys in HCl solutions by amphoteric surfactants. Corrosão e Protecção de Materiais, 26, 53–60.Google Scholar
  29. Mihit, M., El Issami, S., Bouklah, M., Bazzi, L., Hammouti, B., Addi, E. A., Salghi, R., & Kertit, S. (2006). The inhibited effect of some tetrazolic compounds towards the corrosion of brass in nitric acid solution. Applied Surface Science, 252, 2389–2395. DOI:10.1016/j.apsusc.2005.04.009.CrossRefGoogle Scholar
  30. Milošev, I., Mikić, T. K., & Gaberšček, M. (2006). The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu-xZn alloys in chloride containing borate buffer. Electrochimica Acta, 52, 415–426. DOI:10.1016/j.electacta.2006.05.024.CrossRefGoogle Scholar
  31. Obot, I. B., Obi-Egbedi, N. O., & Umoren, S. A. (2009). The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corrosion Science, 51, 276–282. DOI:10.1016/j.corsci.2008.11.013.CrossRefGoogle Scholar
  32. Özkır, D., & Bayol, E. (2011). Inhibition efficiency of benzidine for mild steel in acidic media. Protection of Metals and Physical Chemistry of Surfaces, 47, 517–527. DOI:10.1134/s2070205111040150.CrossRefGoogle Scholar
  33. Özkır, D., Kayakırılmaz, K., Bayol, E., Gürten, A. A., & Kandemirli, F. (2012). The inhibition effect of Azure A on mild steel in 1 M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corrosion Science, 56, 143–152. DOI:10.1016/j.corsci.2011.11.010.CrossRefGoogle Scholar
  34. Pchelnikov, A. P., Sitnikov, A. D., Marshakov, I. K., & Losev, V. V. (1981). A study of the kinetics and mechanism of brass dezincification by radiotracer and electrochemical methods. Electrochimica Acta, 26, 591–600. DOI: 10.1016/0013-4686(81)80025-4.CrossRefGoogle Scholar
  35. Pickering, H.W. (1970). Formation of new phases during anodic dissolution of Zn-rich Cu-Zn alloys. Journal of the Electrochemical Society, 117, 8–15. DOI: 10.1149/1.2407450.CrossRefGoogle Scholar
  36. Pickering, H. W., & Wagner, C. (1967). Electrolytic dissolution of binary alloy containing a noble metal. Journal of the Electrochemical Society, 114, 698–706. DOI: 10.1149/1.2426709.CrossRefGoogle Scholar
  37. Pickering, H. W., & Byrne, P. J. (1971). On preferential anodic dissolution of alloys in the low-current region and the nature of the critical potential. Journal of the Electrochemical Society, 118, 209–215. DOI: 10.1149/1.2407969.CrossRefGoogle Scholar
  38. Polunin, A. V., Pchelnikov, A. P., Losev, V. V., & Marshakov, I. K. (1982). Electrochemical studies of the kinetics and mechanism of brass dezincification. Electrochimica Acta, 27, 467–475. DOI: 10.1016/0013-4686(82)85025-1.CrossRefGoogle Scholar
  39. Ramji, K., Cairns, D. R., & Rajeswari, S. (2008). Synergistic inhibition effect of 2-mercaptobenzothiazole and Tween-80 on the corrosion of brass in NaCl solution. Applied Surface Science, 254, 4483–4493. DOI:10.1016/j.apsusc.2008.01.031.CrossRefGoogle Scholar
  40. Ranjana, Maji, M., & Nandi, M. M. (2009). Corrosion inhibition of brass in presence of sulphonamidoimidazoline and hydropyrimidine in chloride solution. Indian Journal of Chemical Technology, 16, 221–227.Google Scholar
  41. Ravichandran, R., & Rajendran, N. (2005a). Influence of benzotriazole derivatives on the dezincification of 65-35 brass in sodium chloride. Applied Surface Science, 239, 182–192. DOI:10.1016/j.apsusc.2004.05.145.CrossRefGoogle Scholar
  42. Ravichandran, R., & Rajendran, N. (2005b). Electrochemical behaviour of brass in artificial seawater: effect of organic inhibitors. Applied Surface Science, 241, 449–458. DOI:10.1016/j.apsusc.2004.07.046.CrossRefGoogle Scholar
  43. Robinson, F. P. A., & Shalit, M. (1964). The dezincification of brass. Anti-Corrosion Methods and Materials, 11(4), 11–14. DOI:10.1108/eb020168.CrossRefGoogle Scholar
  44. Solmaz, R., Karda, G., Çulha, M., Yazıcı, B., & Erbil, M. (2008a). Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochimica Acta, 53, 5941–5952. DOI:10.1016/j.electacta.2008.03.055.CrossRefGoogle Scholar
  45. Solmaz, R., Karda, G., Yazıcı, B., & Erbil, M. (2008b). Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312, 7–17. DOI:10.1016/j.colsurfa.2007.06.035.CrossRefGoogle Scholar
  46. Solmaz, R., Altunbaş, E., & Kardaş, G. (2011). Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol Schiff base on mild steel. Materials Chemistry and Physics, 125, 796–801 DOI:10.1016/j.matchemphys.2010.09.056.CrossRefGoogle Scholar
  47. Sugawara, H., & Ebiko, H. (1967). Dezincification of brass. Corrosion Science, 7, 513–523. DOI: 10.1016/s0010-938x(67)80090-8.CrossRefGoogle Scholar
  48. Sürme, Y., Gürten, A. A., & Bayol, E. (2011). Corrosion behaviour of mild steel in presence of scale inhibitor in sulfuric acid solution. Protection of Metals and Physical Chemistry of Surfaces, 47, 117–120. DOI:10.1134/s2070205110051053.CrossRefGoogle Scholar
  49. Uhlig, H. H. (1963). Corrosion and corrosion control: An introductionzto corrosion science and engineering (pp. 290). New York, NY, USA: Wiley.Google Scholar
  50. Wang, X. M., Yang, H. Y., & Wang, F. H. (2010). A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corrosion Science, 52, 1268–1276. DOI:10.1016/j.corsci.2009.12.018.CrossRefGoogle Scholar
  51. Young, D. C. (2001). Computational chemistry: A practical guide for applying techniques to real world problems. New York, NY, USA: Wiley.Google Scholar
  52. Zhang, R., & Somasundaran, P. (2006). Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Advances in Colloid and Interface Science, 123–126, 213–229. DOI:10.1016/j.cis.2006.07.004.CrossRefGoogle Scholar
  53. Zhang, Q., Gao, Z. N., Xu, F., & Zou, X. (2011). Adsorption and corrosion inhibitive properties of gemini surfactants in the series of hexanediyl-1,6-bis-(diethyl alkyl ammonium bromide) on aluminium in hydrochloric acid solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380, 191–200. DOI:10.1016/j.colsurfa.2011.02.035.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Demet Özkır
    • 1
    Email author
  • Emel Bayol
    • 1
  • A. Ali Gürten
    • 2
  • Yavuz Sürme
    • 1
  • Fatma Kandemirli
    • 1
  1. 1.Department of Chemistry, Faculty of Arts and SciencesNigde UniversityNigdeTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesOsmaniye Korkut Ata UniversityOsmaniyeTurkey

Personalised recommendations