Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 135–144 | Cite as

Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride

  • Belladamadu Siddappa Anandakumar
  • Muthukur Bhojegowd Madhusudana Reddy
  • Kumarappa Veerappa Thipperudraiah
  • Mohamed Afzal Pasha
  • Gujjarahalli Thimmanna ChandrappaEmail author
Original Paper

Abstract

A simple and rapid synthesis of CdO nanopowder via the solution combustion route employing l-(+)-tartaric acid as a fuel is reported for the first time. The catalyst was characterized by PXRD, SEM, TEM, BET surface area measurement, basic site measurement from back titration and FTIR. Combustion derived CdO nanopowder acts as a catalyst in the sulfonylation of amines with p-toluenesulfonyl chloride to obtain sulfonamides in excellent yield (85–95 %) and high purity under mild reaction conditions. CdO nanopowder has been found to be an efficient catalyst requiring a shorter reaction time (10–30 min) to obtain sulfonamide when compared with the commercial CdO powder requiring 2 h under similar conditions. The catalyst can be recovered and reused four times without any significant loss of catalytic activity. Potential role of CdO nanopowder in the synthesis of sulfonamides and its mechanism is proposed.

Keywords

nanopowder solution combustion amines p-toluenesulfonyl chloride tartaric acid Sulfonamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd El-Salaam, K. M., & Hassan, E. A. (1982). Active surface centres in a heterogeneous CdO catalyst for ethanol decomposition. Surface Technology, 16, 121–128. DOI: 10.1016/0376-4583(82)90031-0.CrossRefGoogle Scholar
  2. Alves, M. B., Medeiros, F. C. M., & Suarez, P. A. Z. (2010). Cadmium compounds as catalysts for biodiesel production. Industrial & Engineering Chemistry Research, 49, 7176–7182. DOI: 10.1021/ie100172u.CrossRefGoogle Scholar
  3. Anderson, K. K. (1979). Sulphonic acids and their derivatives. In D. N. Jones (Ed.), Comprehensive organic chemistry (Vol. 3, pp. 345). Oxford, UK: Pergamon Press.Google Scholar
  4. Angappan, S., Bechermans, L. J., & Augustin, C. O. (2004). Sintering behaviour of MgAl2O4-a prospective anode material. Materials Letters, 58, 2283–2289. DOI: 10.1016/j.matlet.2004.01.033.CrossRefGoogle Scholar
  5. Ashoka, S., Chithaiah, P., & Chandrappa, G. T. (2010). Studies on the synthesis of CdCO3 nanowires and porous CdO powder. Materials Letters, 64, 173–178. DOI: 10.1016/j.matlet.2009.10.036.CrossRefGoogle Scholar
  6. Askarinejad, A., & Morsali, A. (2008). Syntheses and characterization of CdCO3 and CdO nanoparticles by using sonochemical method. Materials Letters, 62, 478–482. DOI: 10.1016/j.matlet.2007.05.082.CrossRefGoogle Scholar
  7. Balandin, A. A., Ferapontov, V. A., & Tolstopyatova, A. A. (1960). The activity of cadmium oxide as catalyst for hydrogen dehydrogenation. Russian Chemical Bulletin, 9, 1630–1636. DOI: 10.1007/bf00906559.CrossRefGoogle Scholar
  8. Blin, J. L., Léonard, A., Yuan, Z. Y., Gigot, L., Vantomme, A., Cheetham, A. K., & Su, B. L. (2003). Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewandte Chemie, 115, 2978–2981. DOI: 10.1002/ange.200250816.CrossRefGoogle Scholar
  9. Blomqvist, K., & Ebbe, R. (1984). Solution studies of systems with polynuclear complex formation. 5. Copper (II) and cadmium (II) d-(+)-tartrate systems. Inorganic Chemistry, 23, 3730–3734. DOI: 10.1021/ic00191a013.CrossRefGoogle Scholar
  10. Chan, Y.W., & Berthelette, C. ( 2002). A mild, efficient method for the synthesis of aromatic and aliphatic sulfonamides. Tetrahedron Letters, 43, 4537–4540. DOI: 10.1016/s0040-4039(02)00848-1.CrossRefGoogle Scholar
  11. Chandrasekhar, S., & Mahapatra, S. (1998). Neighbouring group assisted sulfonamide cleavage of Sharpless aminols under acetonation conditions. Tetrahedron Letters, 39, 695–698. DOI: 10.1016/s0040-4039(97)10638-4.CrossRefGoogle Scholar
  12. Chintareddy, V. R., & Kantam, M. L. (2011). Recent developments on catalytic applications of nano-crystalline magnesium oxide. Catalysis Surveys from Asia, 15, 89–110. DOI: 10.1007/s10563-011-9113-0.CrossRefGoogle Scholar
  13. Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417, 813–821. DOI: 10.1038/nature00785.CrossRefGoogle Scholar
  14. Fahim, R. B., & Abd El-Salaam, K. M. (1967). Surface properties and hydration of cadmium oxide. Journal of Catalysis, 9, 63–69. DOI: 10.1016/0021-9517(67)90181-9.CrossRefGoogle Scholar
  15. Gliński, M., Kijeński, J., & Jakubowski, A. (1995). Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems. Applied Catalysis A: General, 128, 209–217. DOI: 10.1016/0926-860x(95)00082-8.CrossRefGoogle Scholar
  16. Harter, W. G., Albrect, H., Brady, K., Caprathe, B., Dunbar, J., Gilmore, J., Hays, S., Kostlan, C. R., Lunney, B., & Walker, N. (2004). The design and synthesis of sulfonamides as caspase-1 inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 809–812. DOI: 10.1016/j.bmcl.2003.10.065.CrossRefGoogle Scholar
  17. Johnston, L. L., Nettleman, J. H., Braverman, M. A., Sposato, L. K., Supkowski, R. M., & LaDuca, R. L. (2010). Copper benzenedicarboxylate coordination polymers incorporating a long-spanning neutral co-ligand: Effect of anion inclusion and carboxylate pendant-arm length on topology and magnetism. Polyhedron, 29, 303–311. DOI: 10.1016/j.poly.2009.05.022.CrossRefGoogle Scholar
  18. Khaleel, A., & Al-Mansouri, S. (2010). Meso-macroporous γ-alumina by template-free sol-gel synthesis: The effect of the solvent and acid catalyst on the microstructure and textural properties. Colloid Surface A: Physicochemical and Engineering Aspects, 369, 272–280. DOI: 10.1016/j.colsurfa.2010.08.040.CrossRefGoogle Scholar
  19. Madhusudana Reddy, M. B., Ashoka, S., Chandrappa, G. T., & Pasha, M. A. (2010). Nano-MgO: An efficient catalyst for the synthesis of formamides from amines and formic acid under MWI. Catalysis Letters, 138, 82–87. DOI: 10.1007/s10562-010-0372-6.CrossRefGoogle Scholar
  20. Madhusudana Reddy, M. B., Ashoka, S., Anandakumar, B. S., Chandrappa, G. T., & Pasha, M. A. (2011). Combustion derived nanocrystalline-ZrO2 and its catalytic activity for Biginelli condensation under microwave irradiation. Chinese Journal of Chemistry, 29, 1863–1868. DOI: 10.1002/cjoc.201180325.CrossRefGoogle Scholar
  21. Masoumeh, T., Alefeh G., Elaheh, K., & Masood, P. (2011). Two tartrate-pillared coordination polymers: Hydrothermal preparation, crystal structures, spectroscopic and thermal analyses of [M2(μ-C4H4O6)2(H2O)] · 3H2O (M = Mn, Cd). Journal of Inorganic and Organometalic Polymers and Materials, 2121, 627–633 DOI: 10.1007/s10904-011-9495-5.CrossRefGoogle Scholar
  22. Mazaheritehrani, M., Asghari, J., Lotfi Orimi, R., & Pahlavan, S. (2010). Microwave-assisted synthesis of nano-sized cadmium oxide as a new and highly efficient catalyst for solvent free acylation of amines and alcohols. Asian Journal of Chemistry, 22, 2554–2564.Google Scholar
  23. Nagappa, B., & Chandrappa, G. T. (2007). Mesoporous nanocrystalline magnesium oxide for environmental remediation. Micropores and Mesopores Materials, 106, 212–218. DOI: 10.1016/j.micromeso.2007.02.052.CrossRefGoogle Scholar
  24. Nishida, H., Hamada, T., & Yonemitsu, O. (1988). Hydrolysis of tosyl esters initiated by an electron transfer from photoexcited electron-rich aromatic compounds. Journal of Organic Chemistry, 53, 3386–3387. DOI: 10.1021/jo00249a058.CrossRefGoogle Scholar
  25. Nondek, L., Vít, Z., & Málek, J. (1979). Determination of basic sites on the surface of metal oxide catalysts by desorption of benzoic acid. Reaction Kinetics and Catalysis Letters, 10, 7–11. DOI: 10.1007/bf02067504.CrossRefGoogle Scholar
  26. O’Connell, J. F., & Rapoport, H. (1992). 1-Benzenesulfonyland 1-p-toluenesulfonyl-3-methylimidazolium triflates: efficient reagents for the preparation of arylsulfonamides and arylsulfonates. The Journal of Organic Chemistry, 57, 4775–4777. DOI: 10.1021/jo00043a046.CrossRefGoogle Scholar
  27. Okuhara, T., & Tanaka, K. I. (1980). Intermediates of hydrogenation of conjugated dienes and of the isomerization of n-butenes on CdO catalyst. Journal of Catalysis, 61, 135–139. DOI: 10.1016/0021-9517(80)90348-6.CrossRefGoogle Scholar
  28. Patil, K. C., Hegde, M. S., Rattan, T., & Aruna, S. T. (2008). Chemistry of nanocrystalline oxide materials: Combustion synthesis, properties and applications. Danvers, MA, USA: World Scientific.CrossRefGoogle Scholar
  29. Poissonnet, G., Théret-Bettiol, M. H., & Dodd, R. H. (1996). Preparation and 1,3-dipolar cycloaddition reactions of β-carboline azomethine ylides: A direct entry into C-1-and/or C-2-functionalized indolizino[8,7-b]indole derivatives. The Journal of Organic Chemistry, 61, 2273–2282. DOI: 10.1021/jo951520t.CrossRefGoogle Scholar
  30. Reddy, N. S., Mallireddigari, M. R., Cosenza, S., Gumireddy, K., Bell, S. C., Reddy, E. P., & Reddy, M. V. R. (2004). Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorganic & Medicinal Chemistry Letters, 14, 4093–4097. DOI: 10.1016/j.bmcl.2004.05.016.CrossRefGoogle Scholar
  31. Ristić, M., Popović, S., & Musić, S. (2004). Formation and properties of Cd(OH)2 and CdO particles. Materials Letters, 58, 2494–2499. DOI: 10.1016/j.matlet.2004.03.016.CrossRefGoogle Scholar
  32. Russell, M. G. N., Baker, R. J., Barden, L., Beer, M. S., Bristow, L., Broughton, H. B., Knowles, M., McAllister, G., Patel, S., & Castro, J. L. (2001). N-Arylsulfonylindole derivatives as serotonin 5-HT6 receptor ligands. Journal of Medicinal Chemistry, 44, 3881–3895. DOI: 10.1021/jm010943m.CrossRefGoogle Scholar
  33. Samadi, N. S., Amat Mustajab, M. K. A., & Yacob, A. R. (2010). Activation temperature effect on the basic strength of prepared aerogel MgO (AP-MgO). International Journal of Basic & Applied Sciences, 10(2), 118–121.Google Scholar
  34. Santos-Cruz, J., Torres-Delgado, G., Castanedo-Perez, R., Zúñiga-Romero, C. I., & Zelaya-Angel, O. (2007). Optical and electrical characterization of fluorine doped cadmium oxide thin films prepared by the sol-gel method. Thin Solid Films, 515, 5381–5385. DOI: 10.1016/j.tsf.2007.01.036.CrossRefGoogle Scholar
  35. Scozzafava, A., Owa, T., Mastrolorenzo, A., & Supuran, C. T. (2003). Anticancer and antiviral sulfonamides. Current Medicinal Chemistry, 10, 925–953. DOI: 10.2174/0929867033457647.CrossRefGoogle Scholar
  36. Sousa, C., Pacchioni, G., & Illas, F. (1999). Ab initio study of the optical transitions of F centers at low-coordinated sites of the MgO surface. Surface Science, 429, 217–228. DOI: 10.1016/s0039-6028(99)00380-5.CrossRefGoogle Scholar
  37. Sterrer, M., Berger, T., Diwald, O., & Knözinger, E. (2003). Energy transfer on the MgO surface, monitored by UV-induced H2 chemisorption. Journal of the American Chemical Society, 125, 195–199. DOI: 10.1021/ja028059o.CrossRefGoogle Scholar
  38. Stranix, B. R., Lavallée, J. F., Sévigny, G., Yelle, J., Perron, V., LeBerre, N., Herbart, D., & Wu, J. J. (2006). Lysine sulfonamides as novel HIV-protease inhibitors: -Acyl aromatic α-amino acids. Bioorganic & Medicinal Chemistry Letters, 16, 3459–3462. DOI: 10.1016/j.bmcl.2006.04.011.CrossRefGoogle Scholar
  39. Supuran, C. T., Casini, A., & Scozzafava, A. (2003). Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents. Medical Research Reviews, 23, 535–558. DOI: 10.1002/med.10047.CrossRefGoogle Scholar
  40. Thakuria, H., Borah, B. M., & Das, G. (2007). Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations—A comparative study. Journal Molecular Catalysis A: Chemical, 274, 1–10. DOI: 10.1016/j.molcata.2007.04.024.CrossRefGoogle Scholar
  41. Waghulade, R. B., Patil, P. P., & Pasricha, R. (2007). Synthesis and LPG sensing properties of nano-sized cadmium oxide. Talanta, 72, 594–599. DOI: 10.1016/j.talanta.2006.11.024.CrossRefGoogle Scholar
  42. Yasuhara, A., Kameda, M., & Sakamoto, T. (1999). Selective monodesulfonylation of N,N-disulfonylarylamines with tetrabutylammonium fluoride. Chemical and Pharmaceutical Bulletin, 47, 809–812.CrossRefGoogle Scholar
  43. Yuan, W., Fearson, K., & Gelb, M. H. (1989). Synthesis of sulfur-substituted phospholipid analogs as mechanistic probes of phospholipase A2 catalysis. The Journal of Organic Chemistry, 54, 906–910. DOI: 10.1021/jo00265a034.CrossRefGoogle Scholar
  44. Yuan, Z. Y., Ren, T. Z., Vantomme, A., & Su, B. L. (2004). Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chemistry of Materials, 16, 5096–5106. DOI: 10.1021/cm0494812.CrossRefGoogle Scholar
  45. Zhang, G., Zhao, Z., Liu, J., Xu, J., Jing, Y., Duan, A., & Jiang, G. (2009). Macroporous perovskite-type complex oxide catalysts of La1−xKxCo1−yFeyO3 for diesel soot combustion. Journal of Rare Earths, 27, 955–960. DOI: 10.1016/s1002-0721(08)60369-5.CrossRefGoogle Scholar
  46. Zheng, Y. Q., Lin., J. L., & Kong, Z. P. (2004). Coordination polymers based on cobridging of rigid and flexible spacer ligands: Syntheses, crystal structures, and magnetic properties of [Mn(bpy)(H2O)(C4H4O4)]·0.5bpy, Mn(bpy)(C5H6O4), and Mn(bpy)(C6H8O4). Inorganic Chemistry, 43, 2590–2596. DOI: 10.1021/ic0301268.CrossRefGoogle Scholar
  47. Zheng, Y. Q., Han, X. Y., & Zhu, H. L. (2010). Syntheses, crystal structures and properties of tetrahydrofuran-2,3,4,5-tetracarboxylato bridged copper(II) coordination polymers with alkali metals. Polyhedron, 29, 911–919. DOI: 10.1016/j.poly.2009.10.022.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Belladamadu Siddappa Anandakumar
    • 1
  • Muthukur Bhojegowd Madhusudana Reddy
    • 1
  • Kumarappa Veerappa Thipperudraiah
    • 2
  • Mohamed Afzal Pasha
    • 1
  • Gujjarahalli Thimmanna Chandrappa
    • 1
    Email author
  1. 1.Department of ChemistryBangalore UniversityBangaloreIndia
  2. 2.Department of PhysicsNational Degree CollegeJayanagarIndia

Personalised recommendations