Chemical Papers

, Volume 67, Issue 3, pp 265–273 | Cite as

Sludge of wastewater treatment plants as Co2+ ions sorbent

  • Vladimír FrištákEmail author
  • Martin Pipiška
  • Miroslav Horník
  • Jozef Augustín
  • Juraj Lesný
Original Paper


Sludges produced in huge amounts by wastewater treatment plants (WWTP) display high fertility properties; however, the presence of heavy metals restricts their use for agricultural purposes. Sorption capacity of sludge is generally much higher and it can also be considered as a cheap sorbent of heavy metals. The paper describes cobalt sorption by dried activated sludge (DAS) obtained from the aerobic phase of a WWTP. DAS was characterized by FT-IR spectroscopy, cation exchange capacity (CEC), and atomic absorption spectrometry (AAS) analysis. Sorption capacity of DAS (Q eq) increased with the initial concentration (C 0) of Co2+ (CoCl2) within the range from 100 μmol g−1 to 4000 μmol g−1, reaching 15 μmol g−1 and 200 μmol g−1, respectively. The maximum uptake capacity (Q max) at pH 6.0 calculated from the Langmuir isotherm model was (256 ± 9) μmol g−1 for Co2+ ions. Obtained Q values were dependent on pH within the range from 3.0 to 7.0. Competitive effect of other bivalent cations such as Ni2+ in Co2+ sorption equilibrium was confirmed; which is in agreement with the hypothesis of the decisive role of ion-exchange mechanism in metal sorption. The obtained data are discussed from the point of view of potential utilization of sludges as sorbents, i.e. in non-agricultural application.


activated sludge sorption cobalt chemical modification cation exchange capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksu, Z., Açikel, U., Kabasakal, E., & Tezer, S. (2002). Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Research, 36, 3063–3073. DOI: 10.1016/s0043-1354(01)00530-9.CrossRefGoogle Scholar
  2. Chen, J. P., Lie, D., Wang, L., Wu, S., & Zhang, B. (2002). Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching. Journal of Chemical Technology and Biotechnology, 77, 657–662. DOI: 10.1002/jctb.627.CrossRefGoogle Scholar
  3. Chovancová, D., Lesný, J., & Chmielewska, E. (2005). Study of sorption of selenite and selenate by selected sorbents. Nova Biotechnologica, 5, 27–37.Google Scholar
  4. Dionisi, D., Levantesi, C., Majone, M., Bornoroni, L., & De Sanctis, M. (2007). Effect of micropollutants (organic xenobiotics and heavy metals) on the activated sludge process. Industrial and Engineering Chemistry Research, 46, 6762–6769. DOI: 10.1021/ie061688c.CrossRefGoogle Scholar
  5. Dreywood, R. (1946). Qualitative test for carbohydrate material. Industrial and Engineering Chemistry Analytical Edition, 18, 499–504. DOI: 10.1021/i560156a015.CrossRefGoogle Scholar
  6. Ellmann, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77. DOI: 10.1016/0003-9861(59)90090-6.CrossRefGoogle Scholar
  7. Guibaud, G., Comte, S., Bordas, F., Dupuy, S., & Baudu, M. (2005). Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strain, for cadmium, lead and nickel. Chemosphere, 59, 629–638. DOI: 10.1016/j.chemosphere.2004.10.028.CrossRefGoogle Scholar
  8. Guibaud, G., van Hullebusch, E., Bordas, F., d’Abzac, P., & Joussein, E. (2009). Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modelling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology, 100, 2959–2968. DOI: 10.1016/j.biortech.2009.01.040.CrossRefGoogle Scholar
  9. Gustafson, J. P. (2010). Visual-MINTEQ, version 3.0 [computer software]. Stockholm, Sweden: Kungliga Tekniska Högskolan.Google Scholar
  10. Hammaini, A., González, F., Ballester, A., Blázquez, M. L., & Muñoz, J. A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84, 419–426. DOI: 10.1016/j.jenvman.2006.06.015.CrossRefGoogle Scholar
  11. Krishnan, K. A., & Anirudhan, T. S. (2008). Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chemical Engineering Journal, 137, 257–264. DOI: 10.1016/j.cej.2007.04.029.CrossRefGoogle Scholar
  12. Kumar, M., Adham, S. S., & Pearce, W. R. (2006). Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type. Environmental Science & Technology, 40, 2037–2044. DOI: 10.1021/es0512428.CrossRefGoogle Scholar
  13. Kuyucak, N., & Volesky, B. (1989). Accumulation of cobalt by marine alga. Biotechnology and Bioengineering, 33, 809–814. DOI: 10.1002/bit.260330703.CrossRefGoogle Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.Google Scholar
  15. Marešová, J., Horník, M., Pipíška, M., & Augustín, J. (2010). Sorption of Co2+, Zn2+, Cd2+ and Cs+ ions by activated sludge of sewage treatment plant. Nova Biotechnologica, 10, 53–61.Google Scholar
  16. Marešová, J., Pipíška, M., Rozložník, M., Horník, M., Remenárová, L., & Augustin, J. (2011). Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination, 266, 134–141. DOI: 10.1016/j.desal.2010.08.014.CrossRefGoogle Scholar
  17. Nadeem, R., Hanif, M. A., Shaheen, F., Perveen, S., Zafar, M. N., & Iqbal, T. (2008). Physical and chemical modification of distillery sludge for Pb(II) biosorption. Journal of Hazardous Materials, 150, 335–342. DOI: 10.1016/j.jhazmat.2007.04.110.CrossRefGoogle Scholar
  18. Nagpal, N. K. (2004). Water quality guidelines for cobalt. Victoria, BC, Canada: Ministry of Water, Land and Air Protection. (TD226.B7N33 2004)Google Scholar
  19. National Council of the Slovak Republic (2000). Zákon o hnojivách č. 136/2000 Z.z. Bratislava Slovakia: IURA edition.Google Scholar
  20. National Council of the Slovak Republic (2001). Zákon o odpadoch č. 223/2001 Z.z. Bratislava Slovakia: IURA edition.Google Scholar
  21. National Council of the Slovak Republic (2003). Zákon 5.188/2003 o aplikácii čistiarenskeho kalu a dnových sedimentov do pôdy a o doplnení zákona o odpadoch č. 223/2001 Z.z. o odpadoch a o zmene a doplnení niektorých zákonov v znení neskoršich predpisov. Bratislava Slovakia: IURA edition.Google Scholar
  22. Ministry of Environment of the Slovak Republic (2010). National report on water resources. Management in SR 2009. Bratislava, Slovakia: Water Research Institute.Google Scholar
  23. Nieboer, E., & Richardson, D. H. S. (1980). The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environmental Pollution Series B, Chemical and Physical, 1, 3–26. DOI: 10.1016/0143-148x(80)90017-8.CrossRefGoogle Scholar
  24. Pal, A., Ghosh, S., & Paul, A. K. (2006). Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresource Technology, 97, 1253–1258. DOI: 10.1016/j.biortech.2005.01.043.CrossRefGoogle Scholar
  25. Pipíška, M., Horník, M., Vrtoch, Ľ., Augustín, J., & Lesný, J. (2007). Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia, 62, 276–282. DOI: 10.2478/s11756-007-0047-y.CrossRefGoogle Scholar
  26. Remenárová, L., Pipíška, M., Horník, M., Rozložník, M., Augustín, J., & Lesný, J. (2012). Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study. Journal of the Taiwan Institute of Chemical Engineers, 43, 433–443. DOI: 10.1016/j.jtice.2011.12.004.CrossRefGoogle Scholar
  27. Slovak Institute of Metrology (2003). Slovak technical standard: Kvalita pôdy. Stanovenie výmennej kapacity katiónov a hodnoty nasýtenia zásadami pomocou roztoku chloridu bárnatého. ISO 11260. Bratislava, Slovakia.Google Scholar
  28. Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Bao, N., & Gao, B. Y. (2008). Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules. Journal of Colloid Interface Science, 324, 1–8. DOI: 10.1016/j.jcis.2008.04.049.CrossRefGoogle Scholar
  29. Turner, B. F., & Fein, J. B. (2006). Protofit: A program for determining surface protonation constants from titration data. Computers & Geosciences, 32, 1344–1356. DOI: 10.1016/j.cageo.2005.12.005.CrossRefGoogle Scholar
  30. Verbeken, K., Vanheule, B., Pinoy, L., & Verhaege, M. (2009). Cobalt removal from waste-water by means of supported liquid membranes. Journal of Chemical Technology and Biotechnology, 84, 711–715. DOI: 10.1002/jctb.2103.CrossRefGoogle Scholar
  31. Vijayaraghavan, K., Jegan, J., Palanivenu, K., & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology, 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003.CrossRefGoogle Scholar
  32. Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216. DOI: 10.1016/s0304-386x(00)00160-2.CrossRefGoogle Scholar
  33. Zhang, Y., & Banks, C. (2006). A comparison of the properties of polyurethane immobilized Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Research, 40, 788–798. DOI: 10.1016/j.watres.2005.12.011.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Vladimír Frišták
    • 1
    Email author
  • Martin Pipiška
    • 1
  • Miroslav Horník
    • 1
  • Jozef Augustín
    • 1
  • Juraj Lesný
    • 1
  1. 1.Department of Ecochemistry and RadioecologyUniversity of Ss. Cyril and Methodius in TrnavaTrnavaSlovakia

Personalised recommendations