Skip to main content

Advertisement

Log in

Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The production of antimicrobial metabolites by Paenibacillus polymyxa RNC-D was assessed. Two process variables, glucose and inoculum concentrations, were evaluated at different levels (5–40 g L−1, and at φ r = 2.5–5.0 %, respectively), and their effects on biomass formation, minimal inhibitory concentration (MIC) against Escherichia coli, and surface tension reduction (STR) were studied. When the fermentation process was carried out under non-optimised conditions, the biomass, MIC, and STR achieved the following values: 0.6 g L−1, 1 g L−1, and 18.4 mN m−1, respectively. The optimum glucose (16 g L−1) and inoculum volume ratio (φ r = 5.0 %) were defined in order to maximise the biomass formation, with a low value of MIC and high STR of extract. The experiments carried out under optimal conditions showed the following values for the dependent variables: biomass concentration 2.05 g L−1, MIC 31.2 μg mL−1, and STR 10.7 mN m−1, which represented improvement of 241.7 %, 96.9 %, and 41.9 % for the responses of biomass, MIC, and STR, respectively. This is the first recorded study on the optimisation of culture conditions for the production of antimicrobial metabolites of P. polymyxa RNC-D, and constitutes an important step in the development of strategies to modulate the production of antimicrobial molecules by this microorganism at elevated levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adinarayana, K., Prabhakar, T., Srinivasulu, V., Anitha Rao, M., Jhansi Lakshmi, P., & Ellaiah, P. (2003). Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum. Process Biochemistry, 39, 171–177. DOI: 10.1016/s0032-9592(03)00049-9.

    Article  CAS  Google Scholar 

  • Gogoi, D. K., Mazumder, S., Saikia, R., & Bora, T. C. (2008). Impact of submerged culture conditions on growth and bioactive metabolite produced by endophyte Hypocrea spp. NSF-08 isolated from Dillenia indica Linn. in North-East India. Journal de Mycologie Médicale/Journal of Medical Mycology, 18, 1–9. DOI: 10.1016/j.mycmed.2007.10.006.

    Article  Google Scholar 

  • Ito, M., & Koyama, Y. (1972a). Jolipeptin, a new peptide antibiotic. I. Isolation, physico-chemical and biological characteristics. The Journal of Antibiotics, 25, 304–308. DOI: 10.7164/antibiotics.25.304.

    Article  CAS  Google Scholar 

  • Ito, M., & Koyama, Y. (1972b). Jolipeptin, a new peptide antibiotic. II. The mode of action of jolipeptin. The Journal of Antibiotics, 25, 309–314. DOI: 10.7164/antibiotics.25.309.

    Article  CAS  Google Scholar 

  • Kajimura, Y., & Kaneda, M. (1996). Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. The Journal of Antibiotics, 49, 129–135. DOI: 10.7164/antibiotics.49.129.

    Article  CAS  Google Scholar 

  • Kajimura, Y., & Kaneda, M. (1997). Fusaricidins B, C, and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: Isolation, structure elucidation and biological activity. The Journal of Antibiotics, 50, 220–228. DOI: 10.7164/antibiotics.50.220.

    Article  CAS  Google Scholar 

  • Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriology Reviews, 41, 449–474.

    CAS  Google Scholar 

  • Lam, K. S., Mattei, J., & Forenza, S. (1989). Carbon catabolite regulation of rebeccamycin production in Saccharothrix aerocolonigenes. Journal of Industrial Microbiology & Biotechnology, 4, 105–108. DOI: 10.1007/bf01569794.

    CAS  Google Scholar 

  • Mussatto, S. I., & Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 43, 540–546. DOI: 10.1016/j.procbio.2008.01.013.

    Article  CAS  Google Scholar 

  • Nakajima, N., Chihara, S., & Koyama, Y. (1972). A new antibiotic, gatavalin. I. Isolation and characterization. The Journal of Antibiotics, 25, 243–247. DOI: 10.7164/antibiotics.25.243.

    CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2002). Performance standards for antimicrobial susceptibility testing (12th Informational supplement). Wayne, PA, USA: Clinical and Laboratory Standards Institute. (M100-S12)

    Google Scholar 

  • Pichard, B., Larue, J. P., & Thouvenot, D. (1995). Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Letters, 133, 215–218. DOI: 10.1111/j.1574-6968.1995.tb07887.x.

    Article  CAS  Google Scholar 

  • Ratti, R. P., Serrano, N. F. G., Hokka, C. O., & Sousa, C. P. (2008). Antagonistic properties of some microorganisms isolated from Brazilian tropical savannah plants against Staphylococcus coagulase-positive strain. Journal of Venomous Animals and Toxins Including Tropical Diseases, 14, 294–302. DOI: 10.1590/s1678-91992008000200007.

    Article  Google Scholar 

  • Raza, W., Wu, H. S., & Shen, Q. R. (2010). Use of response surface methodology to evaluate the effect of metal ions (Ca2+, Ni2+, Mn2+, Cu2+) on production of antifungal compounds by Paenibacillus polymyxa. Bioresource Technology, 101, 1904–1912. DOI: 10.1016/j.biortech.2009.10.029.

    Article  CAS  Google Scholar 

  • Rodrigues, L. R., Teixeira, J. A., van der Mei, H. C., & Oliveira, R. (2006). Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids and Surfaces B: Biointerfaces, 53, 105–112. DOI: 10.1016/j.colsurfb.2006.08.009.

    Article  CAS  Google Scholar 

  • Santos, J. C., Mussatto, S. I., Cunha, M. A. A., & Silva, S. S. (2005). Variables that affect xylitol production from sugarcane bagasse hydrolysate in a zeolite fluidized bed reactor. Biotechnology Progress, 21, 1639–1643. DOI: 10.1021/bp050219n.

    Article  CAS  Google Scholar 

  • Schulz, B., Boyle, C., Draeger, S., Römmert, A. K., & Krohn, K. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research, 106, 996–1004. DOI: 10.1017/s0953756202006342.

    Article  CAS  Google Scholar 

  • Shen, J., Lu, Z.X., Bie, X.M., Lü, F. X., & Huang, X. Q. (2005). Media optimization for the novel antimicrobial peptide by Bacillus sp. fmbJ224. Chinese Journal of Biotechnology, 21, 609–614. (in Chinese)

    CAS  Google Scholar 

  • Sogn, J. A. (1976). Structure of the peptide antibiotic polypeptin. Journal of Medicinal Chemistry, 19, 1228–1231. DOI: 10.1021/jm00232a012.

    Article  CAS  Google Scholar 

  • Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257–268. DOI: 10.1021/np030397v.

    Article  CAS  Google Scholar 

  • Wang, Z. W., & Liu, X. L. (2008). Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technology, 99, 8245–8251. DOI: 10.1016/j.biortech.2008.03.039.

    Article  CAS  Google Scholar 

  • Wang, X., Huang, L., Kang, Z., Buchenauer, H., & Gao, X. (2010). Optimization of the fermentation process of Actinomycete strain Hhs.015T. Journal of Biomedicine and Biotechnology, 2010, 141876. DOI: 10.1155/2010/141876.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange I. Mussatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, N.F.G., Rodrigues, L., Hokka, C.O. et al. Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D. Chem. Pap. 66, 1111–1117 (2012). https://doi.org/10.2478/s11696-012-0242-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0242-3

Keywords

Navigation