Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 236–244 | Cite as

Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors

  • Vaishali M. PatilEmail author
  • Satya P. Gupta
  • Subeer Samanta
  • Neeraj Masand
Original Paper

Abstract

Hepatitis C virus (HCV) infection is a global health threat and current therapies warrant the need for novel HCV therapies. Several synthetic analogs targeting HCV serine protease and RNA-dependent RNA polymerase have entered clinical development. To investigate the novel HCV NS5B RdRp polymerase inhibitor, screening of a designed data set consisting of benzimidazole analogs by the FlexX docking approach was performed. Binding interactions at the active sites (PDB ID: 2DXS) were evaluated leading to the rationalization of further synthesis and evaluation procedures.

Keywords

virtual screening anti-HCV NS5B polymerase FlexX docking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2012_241_MOESM1_ESM.doc (3.3 mb)
Supplementary material, approximately 3.29 MB.

References

  1. Anilkumar, G. N., Selyutin, O., Rosenblum, S. B., Zeng, Q. B., Jiang, Y. H., Chan, T. Y., Pu, H. Y., Wang, L., Bennett, F., Chen, K. X., Lesburg, C. A., Duca, J. S., Gavalas, S., Huang, Y. H., Pinto, P., Sannigrahi, M., Velazquez, F., Venkataraman, S., Vilbubhan, B., Agrawal, S., Ferrari, E., Jiang, C. K., Huang, H. C., Shih, N. Y., Njoroge, F. G., & Kozlowski, J. A. (2012). II. Novel HCV NS5B polymerase inhibitors: Discovery of indole C2 aryl sulfonamides. Bioorganic & Medicinal Chemistry Letters, 22, 713–717. DOI: 10.1016/j.bmcl.2011.10.041.CrossRefGoogle Scholar
  2. Beaulieu, P. L. (2007). Non-nucleoside inhibitors of the HCV NS5B polymerase: progress in the discovery and development of novel agents for the treatment of HCV infections. Current Opinion in Investigational Drugs, 8, 614–634.Google Scholar
  3. Beaulieu, P. L., Bös, M., Bousquet, Y., DeRoy, P., Fazal, G., Gauthier, J., Gillard, J., Goulet, S., McKercher, G., Poupart, M. A., Valois, S., & Kukolj, G. (2004). Non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase: discovery of benzimidazole 5-carboxylic amide derivatives with low-nanomolar potency. Bioorganic & Medicinal Chemistry Letters, 14, 967–971. DOI: 10.1016/j.bmcl.2003.12.032.CrossRefGoogle Scholar
  4. Behrens, S. E., Tomei, L., & De Francesco, R. (1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. The EMBO Journal, 15, 12–22.Google Scholar
  5. BioSolveIT (2012). FlexX [computer software]. Sankt Augustin, Germany: BioSolveIT. www.biosolveit.de Google Scholar
  6. Biswal, B. K., Cherney, M. M., Wang, M., Chan, L., Yannopoulos, C. G., Bilimoria, D., Nicolas, O., Bedard, J., & James, M. N. (2005). Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by nonnucleoside inhibitors. The Journal of Biological Chemistry, 280, 18202–18210. DOI: 10.1074/jbc.m413410200.CrossRefGoogle Scholar
  7. Böhm, H. J. (1992). The computer program LUDI: A new method for the de novo design of enzyme inhibitors. Journal of Computer-Aided Molecular Design, 6, 61–78. DOI: 10.1007/bf00124387.CrossRefGoogle Scholar
  8. Bressanelli, S., Tomei, L., Rey, F. A., & De Francesco, R. (2002). Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. Journal of Virology, 76, 3482–3492. DOI: 10.1128/jvi.76.7.3482-3492.2002.CrossRefGoogle Scholar
  9. Chan, L., Reddy, T. J., Proulx, M., Das, S. K., Pereira, O., Wang, W. Y., Siddiqui, A., Yannopoulos, C. G., Poisson, C., Turcotte, N., Drouin, A., Alaoui-Ismaili, M. H., Bethell, R., Hamel, M., L’Heureux, L., Bilimoria, D., & Nguyen-Ba, N. (2003). Identification of N,N-disubstituted phenylalanines as a novel class of inhibitors of hepatitis C NS5B polymerase. Journal of Medicinal Chemistry, 46, 1283–1285. DOI: 10.1021/jm0340400.CrossRefGoogle Scholar
  10. Chan, L., Pereira, O., Reddy, T. J., Das, S. K., Poisson, C., Courchesne, M., Proulx, M., Siddiqui, A., Yannopoulos, C. G., Nguyen-Ba, N., Roy, C., Nasturica, D., Moinet, C., Bethell, R., Hamel, M., L’Heureux, L., David, M., Nicolas, O., Courtemanche-Asselin, P., Brunette, S., Bilimoria, D., & Bedard, J. (2004). Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: Tertiary amides. Bioorganic & Medicinal Chemistry Letters, 14, 797–800. DOI: 10.1016/j.bmcl.2003.10.068.CrossRefGoogle Scholar
  11. Di Marco, S., Volpari, C., Tomei, L., Altamura, S., Harper, S., Narjes, F., Koch, U., Rowley, M., De Francesco, R., Migliaccio, G., & Carfí, A. (2005). Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. The Journal of Biological Chemistry, 280, 29765–29770. DOI: 10.1074/jbc.m505423200.CrossRefGoogle Scholar
  12. Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C., Connolly, D. T., & Shoichet, B. K. (2002). Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. Journal of Medicinal Chemistry, 45, 2213–2221. DOI: 10.1021/jm010548w.CrossRefGoogle Scholar
  13. Gopalsamy, A., Lim, K. T., Ciszewski, G., Park, K., Ellingboe, J. W., Bloom, J., Insaf, S., Upeslacis, J., Mansour, T. S., Krishnamurthy, G., Damarla, M., Pyatski, Y., Ho, D., Howe, A. Y. M., Orlowski, M., Feld, B., & O’Connell, J. (2004). Discovery of pyrano[3,4-b]indoles as potent and selective HCV NS5B polymerase inhibitors. Journal of Medicinal Chemistry, 47, 6603–6608. DOI: 10.1021/jm0401255.CrossRefGoogle Scholar
  14. Guido, R. V. C., Oliva, G., & Andricopulo, A. D. (2008). Virtual screening and its integration with modern drug design technologies. Current Medicinal Chemistry, 15, 37–46. DOI: 10.2174/092986708783330683.CrossRefGoogle Scholar
  15. Gupta, S. P., Samanta, S., & Patil, V. M. (2010). A 3D-QSAR study on a series of benzimidazole derivatives acting as hepatitis C virus inhibitors: application of kNN-molecular field analysis. Medicinal Chemistry, 6, 87–90.CrossRefGoogle Scholar
  16. Ikegashira, K., Oka, T., Hirashima, S., Noji, S., Yamanaka, H., Hara, Y., Adachi, T., Tsuruha, J. I., Doi, S., Hase, Y., Noguchi, T., Ando, I., Ogura, N., Ikeda, S., & Hashimoto, H. (2006). Discovery of conformationally constrained tetracyclic compounds as potent hepatitis C virus NS5B RNA polymerase inhibitors. Journal of Medicinal Chemistry, 49, 6950–6953. DOI: 10.1021/jm0610245.CrossRefGoogle Scholar
  17. Kaushik-Basu, N., Bopda-Waffo, A., Talele, T. T., Basu, A., Chen, Y., & Kucukguzel, S. G. (2008a). 4-Thiazolidinones: a novel class of hepatitis C virus NS5B polymerase inhibitors. Frontiers in Bioscience, 13, 3857–3868. DOI: 10.2741/2974.Google Scholar
  18. Kaushik-Basu, N., Bopda-Waffo, A., Talele, T. T., Basu, A., Costa, P. R. R., da Silva, A. J. M., Sarafianos, S. G., Noël, F. (2008b). Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucleic Acids Research, 36, 1482–1496. DOI: 10.1093/nar/gkm1178.CrossRefGoogle Scholar
  19. Koch, U., & Narjes, F. (2007). Recent progress in the development of inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. Current Topics in Medicinal Chemistry, 7, 1302–1329.CrossRefGoogle Scholar
  20. Kumar, D. V., Rai, R., Brameld, K. A., Somoza, J. R., Rajagopalan, R., Janc, J. W., Xia, Y. M., Ton, T. L., Shaghafi, M. B., Hu, H. Y., Lehoux, I., To, N., Young, W. B., & Green, M. J. (2011). Quinolones as HCV NS5B polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 82–87. DOI: 10.1016/j.bmcl.2010.11.068.CrossRefGoogle Scholar
  21. Li, H., Tatlock, J., Linton, A., Gonzalez, J., Borchardt, A., Dragovich, P., Jewell, T., Prins, T., Zhou, R., Blazel, J., Parge, H., Love, R., Hickey, M., Doan, C., Shi, S., Duggal, R., Lewis, C., & Fuhrman, S. (2006). Identification and structure-based optimization of novel dihydropyrones as potent HCV RNA polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 4834–4838. DOI: 10.1016/j.bmcl.2006.06.065.CrossRefGoogle Scholar
  22. Love, R. A., Parge, H. E., Yu, X., Hickey, M. J., Diehl, W., Gao, J. J., Wriggers, H., Ekker, A., Wang, L., Thomson, J. A., Dragovich, P. S., & Fuhrman, S. A. (2003). Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. Journal of Virology, 77, 7575–7581. DOI: 10.1128/jvi.77.13.7575-7581.2003.CrossRefGoogle Scholar
  23. Lyne, P. D. (2002). Structure-based virtual screening: an overview. Drug Discovery Today, 7, 1047–1055. DOI: 10.1016/s1359-6446(02)02483-2.CrossRefGoogle Scholar
  24. Lyne, P. D., Kenny, P.W., Cosgrove, D. A., Deng, C., Zabludoff, S., Wendoloski, J. J., & Ashwell, S. J. (2004). Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening. Journal of Medicinal Chemistry, 47, 1962–1968. DOI: 10.1021/jm030504i.CrossRefGoogle Scholar
  25. Moradpour, D., Penin, F., & Rice, C. M. (2007). Replication of hepatitis C virus. Nature Reviews Microbiology, 5, 453–463. DOI: 10.1038/nrmicro1645.CrossRefGoogle Scholar
  26. Ontoria, J. M., Martín Hernando, J. I., Malancona, S., Attenni, B., Stansfield, I., Conte, I., Ercolani, C., Habermann, J., Ponzi, S., Di Filippo, M., Koch, U., Rowley, M., & Narjes, F. (2006). Identification of thieno[3,2-b]pyrroles as allosteric inhibitors of hepatitis C virus NS5B polymerase. Bioorganic & Medicinal Chemistry Letters, 16, 4026–4030. DOI: 10.1016/j.bmcl.2006.05.012.CrossRefGoogle Scholar
  27. Patel, P. D., Patel, M. R., Kaushik-Basu, N., & Talele, T. T. (2008). 3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors. Journal of Chemical Information and Modeling, 48, 42–55. DOI: 10.1021/ci700266z.CrossRefGoogle Scholar
  28. Patil, V. M., Gupta, S. P., & Samanta, S. (2010). A QSAR study on some series of anti-hepatitis C virus (HCV) agents. Letters in Drug Design & Discovery, 7, 139–148. DOI: 10.2174/157018010790225877.CrossRefGoogle Scholar
  29. Patil, V. M., Gupta, S. P., Samanta, S., & Masand, N. (2011). 3D QSAR kNN-MFA studies on thiouracil derivatives as hepatitis C virus inhibitors. Medicinal Chemistry Research, 20, 1616–1621. DOI: 10.1007/s00044-010-9435-x.CrossRefGoogle Scholar
  30. Powers, J. P., Piper, D. E., Li, Y., Mayorga, V., Anzola, J., Chen, J. M., Jaen, J. C., Lee, G., Liu, J. Q., Peterson, M. G., Tonn, G. R., Ye, Q. P., Walker, N. P. C., & Wang, Z. L. (2006). SAR and mode of action of novel non-nucleoside inhibitors of hepatitis C NS5b RNA polymerase. Journal of Medicinal Chemistry, 49, 1034–1046. DOI: 10.1021/jm050859x.CrossRefGoogle Scholar
  31. Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm, Journal of Molecular Biology, 261, 470–489. DOI: 10.1006/jmbi.1996.0477.CrossRefGoogle Scholar
  32. Rarey, M., Kramer, B., & Lengauer, T. (1997). Multiple automatic base selection: Protein-ligand docking based on incremental construction without manual intervention. Journal of Computer Aided Molecular Design, 11, 369–384. DOI: 10.1023/a:1007913026166.CrossRefGoogle Scholar
  33. Rester, U. (2008). From virtuality to reality — Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Current Opinion in Drug Discovery & Development, 11, 559–568.Google Scholar
  34. Rong, F., Chow, S. Y., Yan, S. Q., Larson, G., Hong, Z., & Wu, J. (2007). Structure-activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 1663–1666. DOI: 10.1016/j.bmcl.2006.12.103.CrossRefGoogle Scholar
  35. Shaw, A. N., Tedesco, R., Bambal, R., Chai, D. P., Concha, N. O., Darcy, M. G., Dhanak, D., Duffy, K. J., Fitch, D. M., Gates, A., Johnston, V. K., Keenan, R. M., Lin-Goerke, J., Liu, N. N., Sarisky, R. T., Wiggall, K. J., & Zimmerman, M. N. (2009). Substituted benzothiadizine inhibitors of Hepatitis C virus polymerase. Bioorganic & Medicinal Chemistry Letters, 19, 4350–4353. DOI: 10.1016/j.bmcl.2009.05.091.CrossRefGoogle Scholar
  36. Soriano, V., Peters, M. G., & Zeuzem, S. (2009). New therapies for hepatitis C virus infection. Clinical Infectious Diseases, 48, 313–320. DOI: 10.1086/595848.CrossRefGoogle Scholar
  37. Talele, T. T. (2008). Multiple allosteric pockets of HCV NS5B polymerase and its inhibitors: A structure based insight. Current Bioactive Compounds, 4, 86–109. DOI: 10.2174/157340708785294217.CrossRefGoogle Scholar
  38. Tedesco, R., Shaw, A. N., Bambal, R., Chai, D. P., Concha, N. O., Darcy, M. G., Dhanak, D., Fitch, D. M., Gates, A., Gerhardt, W. G., Halegoua, D. L., Han, C., Hofmann, G. A., Johnston, V. K., Kaura, A. C., Liu, N. N., Keenan, R. M., Lin-Goerke, J., Sarisky, R. T., Wiggall, K. J., Zimmerman, M. N., & Duffy, K. J. (2006). 3-(1,1-dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones, potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Journal of Medicinal Chemistry, 49, 971–983. DOI: 10.1021/jm050855s.CrossRefGoogle Scholar
  39. Wang, Q. M., & Heinz, B. A. (2000). Recent advances in prevention and treatment of hepatitis C virus infections. Progress in Drug Research, 55, 1–32. DOI: 10.1007/978-3-0348-8385-61.CrossRefGoogle Scholar
  40. Yan, S. Q., Appleby, T., Larson, G., Wu, J. Z., Hamatake, R., Hong, Z., & Yao, N. H. (2006). Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 5888–5891. DOI: 10.1016/j.bmcl.2006.08.056.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Vaishali M. Patil
    • 1
    Email author
  • Satya P. Gupta
    • 2
  • Subeer Samanta
    • 3
  • Neeraj Masand
    • 4
  1. 1.Medicinal Chemistry Research Laboratory, School of PharmacyBharat Institute of TechnologyMeerutIndia
  2. 2.Department of Applied SciencesMeerut Institute of Engineering & TechnologyMeerutIndia
  3. 3.Department of Pharmaceutical SciencesBirla Institute of TechnologyMesra, RanchiIndia
  4. 4.Department of PharmacyLala Lajpat Rai Memorial Medical CollegeMeerutIndia

Personalised recommendations