Skip to main content
Log in

Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Acidity constant values of benzoic acid (BA)-modified platinum electrode (Pt-BA) and p-aminobenzoic acid (pABA)-modified platinum electrode (Pt-NHBA) surfaces were determined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and contact angle measurements (CAM). Diazonium tetrafluoroborate salt reduction and pABA oxidation reactions were used to prepare (Pt-BA) and (Pt-NHBA) surfaces, respectively. Both surfaces exhibited pH dependence with [Fe(CN)6]3−/4− redox probe solutions at different pH; this allowed us to estimate the surface pK a values. Acidity constants for Pt-BA surface were found to be pK a (3.09 ± 0.25), (4.89 ± 0.11), and (3.91 ± 0.54) by CV, EIS, and CAM techniques, respectively, while the values for Pt-NHBA surface were pK a (3.16 ± 0.45), (4.24 ± 0.40), and (5.64 ± 0.12). The Pt-BA surface pK a values were lower in CV and CAM measurements relative to the bulk solution of BA, while a higher value was observed in EIS for Pt-BA surface. The pK a values determined for Pt-NHBA surface via both CV and EIS were lower than the bulk value; however, the result obtained from CAM was one unit higher than pK a of bulk pABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abiman, P., Crossley, A., Wildgoose, G. G., Jones, J. H., & Compton, R. G. (2007). Investigating the thermodynamic causes behind the anomalously large shifts in pK a values of benzoic acid-modified graphite and glassy carbon surfaces. Langmuir, 23, 7847–7852. DOI: 10.1021/la7005277.

    Article  CAS  Google Scholar 

  • Adenier, A., Chehimi, M. M., Gallardo, I., Pinson, J., & Vilà, N. (2004). Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir, 20, 8243–8253. DOI: 10.1021/la049194c.

    Article  CAS  Google Scholar 

  • Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., & Savéant, J. M. (1997). Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 119, 201–207. DOI: 10.1021/ja963354s.

    Article  CAS  Google Scholar 

  • Anariba, F., DuVall, S. H., & McCreery, R. L. (2003). Mono- and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy “scratching”. Analytical Chemistry, 75, 3837–3844. DOI: 10.1021/ac034026v.

    Article  CAS  Google Scholar 

  • Andreu, R., & Fawcett, W. R. (1994). Discreteness-of-charge effects at molecular films containing acid/base groups. The Journal of Physical Chemistry, 98, 12753–12758. DOI: 10.1021/j100099a045.

    Article  CAS  Google Scholar 

  • Bain, C. D., & Whitesides, G. M. (1989). A study by contact angle of the acid-base behavior of monolayers containing.omega.-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading. Langmuir, 5, 1370–1378. DOI: 10.1021/la00090a019.

    Article  CAS  Google Scholar 

  • Baranton, S., & Bélanger, D. (2005). Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations. The Journal of Physical Chemistry B, 109, 24401–24410. DOI: 10.1021/jp054513+.

    Article  CAS  Google Scholar 

  • Berisha, A., Combellas, C., Kanoufi, F., Pinson, J., & Podvorica, F. I. (2011). Physisorption vs grafting of aryldiazonium salts onto iron: A corrosion study. Electrochimica Acta, 56, 10762–10766. DOI: 10.1016/j.electacta.2011.01.049.

    Article  CAS  Google Scholar 

  • Bryant, M. A., & Crooks, R. M. (1993). Determination of surface pK a values of surface-confined molecules derivatized with pH-sensitive pendant groups. Langmuir, 9, 385–387. DOI: 10.1021/la00026a005.

    Article  CAS  Google Scholar 

  • Burris, S. C., Zhou, Y., Maupin, W. A., Ebelhar, A. J., & Daugherty, M. W. (2008). The effect of surface preparation on apparent surface pK a’s of ω-mercaptocarboxylic acid self-assembled monolayers on polycrystalline gold. The Journal of Physical Chemistry C, 112, 6811–6815. DOI: 10.1021/jp077052w.

    Article  CAS  Google Scholar 

  • Cheng, Q., & Brajter-Toth, A. (1992). Selectivity and sensitivity of self-assembled thioctic acid electrodes. Analytical Chemistry, 64, 1998–2000. DOI: 10.1021/ac00041a041.

    Article  CAS  Google Scholar 

  • Cheng, Q., & Brajter-Toth, A. (1996). Permselectivity, sensitivity, and amperometric pH sensing at thioctic acid monolayer microelectrodes. Analytical Chemistry, 68, 4180–4185. DOI: 10.1021/ac960329w.

    Article  CAS  Google Scholar 

  • Creager, S. E., & Clarke, J. (1994). Contact-angle titrations of mixed ω-mercaptoalkanoic acid/alkanethiol monolayers on gold. Reactive vs nonreactive spreading, and chain length effects on surface pK a values. Langmuir, 10, 3675–3683. DOI: 10.1021/la00022a048.

    Article  CAS  Google Scholar 

  • Demirci, S., Alaslan, A., & Caykara, T. (2009). Preparation, characterization and surface pK a values of poly(N-vinyl-2-pyrrolidone)/chitosan blend films. Applied Surface Science, 255, 5979–5983. DOI: 10.1016/j.apsusc.2009.01.050.

    Article  CAS  Google Scholar 

  • Demirci, S., & Caykara, T. (2010). Formation of dicarboxylic acid-terminated monolayers on silicon wafer surface. Surface Science, 604, 649–653. DOI: 10.1016/j.susc.2010.01.009.

    Article  CAS  Google Scholar 

  • Downard, A. J. (2000). Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis, 12, 1085–1096. DOI: 10.1002/1521-4109(200010)12:14〈1085::aid-elan 1085〉3.0.co;2-a.

    Article  CAS  Google Scholar 

  • Downard, A. J., & Prince, M. J. (2001). Barrier properties of organic monolayers on glassy carbon electrodes. Langmuir, 17, 5581–5586. DOI: 10.1021/la010499q.

    Article  CAS  Google Scholar 

  • Fernández, C. M., & Martin, V. C. (1977). Preparation d’un tampon universel de force ionique 0,3 M. Talanta, 24, 747–748. DOI: 10.1016/0039-9140(77)80204-x.

    Article  Google Scholar 

  • Foulon, C., Duhal, N., Lacroix-Callens, B., Vaccher, C., Bonte, J. P., & Goossens, J. F. (2007). Determination of pK a values of benzoxa-, benzothia- and benzoselena-zolinone derivatives by capillary electrophoresis: Comparison with potentiometric titration and spectrometric data. European Journal of Pharmaceutical Sciences, 31, 165–171. DOI: 10.1016/j.ejps.2007.03.002.

    Article  CAS  Google Scholar 

  • Ghilane, J., Delamar, M., Guilloux-Viry, M., Lagrost, C., Mangeney, C., & Hapiot, P. (2005). Indirect reduction of aryldiazonium salts onto cathodically activated platinum surfaces: Formation of metal-organic structures. Langmuir, 21, 6422–6429. DOI: 10.1021/la050401y.

    Article  CAS  Google Scholar 

  • Godínez, L. A., Castro, R., & Kaifer, A. E. (1996). Adsorption of viologen-based polyelectrolytes on carboxylate-terminated self-assembled monolayers. Langmuir, 12, 5087–5092. DOI: 10.1021/la960485y.

    Article  Google Scholar 

  • Hernández-Muñoz, L. S., Fragoso-Soriano, R. J., Vázquez-López, C., Klimova, E., Ortiz-Frade, L. A., Astudillo, P. D., & González, F. J. (2010). Modification of carbon surfaces with methyl groups by using ferrocene derivatives as redox catalysts of the oxidation of acetate ions. Journal of Electroanalytical Chemistry, 650, 62–67. DOI: 10.1016/j.jelechem.2010.09.006.

    Article  Google Scholar 

  • Hu, K., & Bard, A. J. (1997). Use of atomic force microscopy for the study of surface acid-base properties of carboxylic acidterminated self-assembled monolayers. Langmuir, 13, 5114–5119. DOI: 10.1021/la9700782.

    Article  CAS  Google Scholar 

  • İsbir, A. A., Solak, A. O., Üstündağ, Z., Bilge, S., Natsagdorj, A., Kiliç, E., & Kiliç, Z. (2005). The electrochemical behavior of some podands at a benzo[c]cinnoline modified glassy carbon electrode. Analytica Chimica Acta, 547, 59–63. DOI:10.1016/j.aca.2005.02.049.

    Article  Google Scholar 

  • İsbir, A. A., Solak, A. O., Üstündağ, Z., Bilge, S., & Kılıç, Z. (2006). Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode. Analytica Chimica Acta, 573–574, 26–33. DOI: 10.1016/j.aca.2006.03.056.

    Google Scholar 

  • İsbir-Turan, A. A., Üstündağ, Z., Solak, A. O., Kılıç, E., & Avseven, A. (2009). Electrochemical and spectroscopic characterization of a benzo[c]cinnoline electrografted platinum surface. Thin Solid Films, 517, 2871–2877. DOI:10.1016/j.tsf.2008.10.073.

    Article  Google Scholar 

  • İsbir-Turan, A., Kılıç, E., Üstündağ, Z., Eki, H., Solak, A. O., & Zorer, B. (2012). Syntheses and modifications of bisdiazo nium salts of 3,8-benzo[c]cinnoline and 3,8-benzo[c]cinnoline 5-oxide onto glassy carbon electrode and the characterization of the modified surfaces. Journal of Solid State Electrochemistry, 16, 235–245. DOI: 10.1007/s10008-011-1319-6.

    Article  Google Scholar 

  • Jain, R., & Vikas (2011). Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation. Colloids and Surfaces B: Biointerfaces, 87, 423–426. DOI: 10.1016/j.colsurfb.2011.06.001.

    Article  CAS  Google Scholar 

  • Janin, M., Ghilane, J., Randriamahazaka, H., & Lacroix, J. C. (2009). Microelectrodes modification through the reduction of aryl diazonium and their use in scanning electrochemical microscopy (SECM). Electrochemistry Communications, 11, 647–650. DOI: 10.1016/j.elecom.2009.01.004.

    Article  CAS  Google Scholar 

  • Khoshroo, M., & Rostami, A. A. (2008). EIS study of the redox reaction of Fe(CN) 3−/4−6 at glassy carbon electrode via diazonium reduction in aqueous and acetonitrile solutions. Journal of Electroanalytical Chemistry, 624, 205–210. DOI: 10.1016/j.jelechem.2008.09.008.

    Article  CAS  Google Scholar 

  • Kibena, E., Mäeorg, U., Matisen, L., & Tammeveski, K. (2011). Electrochemical behaviour of ABTS on aryl-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 661, 343–350. DOI: 10.1016/j.jelechem.2011.08.015.

    Article  CAS  Google Scholar 

  • Kim, K., & Kwak, J. (2001). Faradaic impedance titration of pure 3-mercaptopropionic acid and ethanethiol mixed monolayers on gold. Journal of Electroanalytical Chemistry, 512, 83–91. DOI: 10.1016/s0022-0728(01)00588-5.

    Article  CAS  Google Scholar 

  • Li, X., Wan, Y., & Sun, C. (2004). Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution. Journal of Electroanalytical Chemistry, 569, 79–87. DOI: 10.1016/j.jelechem.2004.01.036.

    Article  CAS  Google Scholar 

  • Liu, J., Cheng, L., Liu, B., & Dong, S. (2000). Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films. Langmuir, 16, 7471–7476. DOI: 10.1021/la9913506.

    Article  CAS  Google Scholar 

  • Liu, G., Böcking, T., & Gooding, J. J. (2007). Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry, 600, 335–344. DOI: 10.1016/j.jelechem.2006.09.012.

    Article  CAS  Google Scholar 

  • Liu, G., Liu, J., Davis, T. P., & Gooding, J. J. (2011). Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody. Biosensors and Bioelectronics, 26, 3660–3665. DOI: 10.1016/j.bios.2011.02.026.

    Article  CAS  Google Scholar 

  • Lu, G. H., Liu, C. Y., Zhao, H. Y., Liu, W., Jiang, L. P., & Jiang, L. Y. (2004). Determination of surface pK a of pure mercaptoacetic acid and 2-mercaptobenzothiazole mixed monolayers by impedance titration. Chinese Chemical Letters, 15, 827–830.

    CAS  Google Scholar 

  • Luo, I. Q., Cheng, Z. L., Yang, X. R., & Wang, E. K. (2000). Study on surface acid-base property of carboxylic acidterminated self-assembled monolayers by cyclic voltammetry and electrochemical impedance spectroscopy. Chinese Journal of Chemistry, 18, 863–867. DOI: 10.1002/cjoc.20000180612.

    Article  CAS  Google Scholar 

  • Morita, K., Yamaguchi, A., & Teramae, N. (2004). Electrochemical modification of benzo-15-crown-5 ether on a glassy carbon electrode for alkali metal cation recognition. Journal of Electroanalytical Chemistry, 563, 249–255. DOI: 10.1016/j.jelechem.2003.09.018.

    Article  CAS  Google Scholar 

  • Oztekin, Y., Ramanaviciene, A., Yazicigil, Z., Solak, A. O., & Ramanavicius, A. (2011). Direct electron transfer from glucose oxidase immobilized on polyphenanthroline-modified glassy carbon electrode. Biosensors and Bioelectronics, 26, 2541–2546. DOI: 10.1016/j.bios.2010.11.001.

    Article  CAS  Google Scholar 

  • Oztekin, Y., Yazicigil, Z., Solak, A. O., Ustundag, Z., Okumus, A., Kilic, Z., Ramanaviciene, A., & Ramanavicius, A. (2012). Phenanthroline derivatives electrochemically grafted to glassy carbon for Cu(II) ion detection. Sensors and Actuators B: Chemical, 166–167, 117–127. DOI: 10.1016/j.snb.2012.01.025.

    Article  Google Scholar 

  • Patolsky, F., Zayats, M., Katz, E., & Willner, I. (1999). Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: Characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Analytical Chemistry, 71, 3171–3180. DOI: 10.1021/ac9901541.

    Article  CAS  Google Scholar 

  • Petrov, J. G., & Möbius, D. (1996). Effect of the ω-dipoles of neutral Langmuir monolayers on the pK of an embedded amphiphilic polarity probe. Langmuir, 12, 3650–3656. DOI: 10.1021/la9515736.

    Article  CAS  Google Scholar 

  • Pinson, J., & Podvorica, F. (2005). Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chemical Society Reviews, 34, 429–439. DOI: 10.1039/b406228k.

    Article  CAS  Google Scholar 

  • Saby, C., Ortiz, B., Champagne, G. Y., & Bélanger, D. (1997). Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir, 13, 6805–6813. DOI: 10.1021/la961033o.

    Article  CAS  Google Scholar 

  • Solak, A. O., Eichorst, L. R., Clark, W. J., & McCreery, R. L. (2003). Modified carbon surfaces as “organic electrodes” that exhibit conductance switching. Analytical Chemistry, 75, 296–305. DOI: 10.1021/ac026107h.

    Article  CAS  Google Scholar 

  • Stewart, M. P., Maya, F., Kosynkin, D. V., Dirk, S. M., Stapleton, J. J., McGuiness, C. L., Allara, D. L., & Tour, J. M. (2004). Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. Journal of the American Chemical Society, 126, 370–378. DOI: 10.1021/ja0383120.

    Article  CAS  Google Scholar 

  • Sugihara, K., Shimazu, K., & Uosaki, K. (2000). Electrode potential effect on the surface pK a of a self-assembled 15-mercaptohexadecanoic acid monolayer on a gold/quartz crystal microbalance electrode. Langmuir, 16, 7101–7105. DOI: 10.1021/la991301t.

    Article  CAS  Google Scholar 

  • Üstündağ, Z., & Solak, A. O. (2009). EDTA modified glassy carbon electrode: Preparation and characterization. Electrochimica Acta, 54, 6426–6432. DOI: 10.1016/j.electacta.2009.06.015.

    Article  Google Scholar 

  • Vase, K. H., Holm, A. H., Pedersen, S. U., & Daasbjerg, K. (2005). Immobilization of aryl and alkynyl groups onto glassy carbon surfaces by electrochemical reduction of iodonium salts. Langmuir, 21, 8085–8089. DOI: 10.1021/la050933e.

    Article  CAS  Google Scholar 

  • Vase, K. H., Holm, A. H., Norrman, K., Pedersen, S. U., & Daasbjerg, K. (2008). Electrochemical surface derivatization of glassy carbon by the reduction of triaryl- and alkyldiphenylsulfonium salts. Langmuir, 24, 182–188. DOI: 10.1021/la702301a.

    Article  CAS  Google Scholar 

  • Wagner, M., Mavon, A., Haidara, H., Vallat, M. F., Duplan, H., & Roucoules, V. (2012). From contact angle titration to chemical force microscopy: a new route to assess the pH-dependent character of the stratum corneum. International Journal of Cosmetic Science, 34, 55–63. DOI: 10.1111/j.1468-2494.2011.00681.x.

    Article  Google Scholar 

  • Wang, J., Frostman, L. M., & Ward, M. D. (1992). Selfassembled thiol monolayers with carboxylic acid functionality: measuring pH-dependent phase transitions with the quartz crystal microbalance. The Journal of Physical Chemistry, 96, 5224–5228. DOI: 10.1021/j100192a010.

    Article  CAS  Google Scholar 

  • Yang, G., Shen, Y., Wang, M., Chen, H., Liu, B., & Dong, S. (2006). Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aque ous solution. Talanta, 68, 741–747. DOI: 10.1016/j.talanta.2005.05.017.

    Article  CAS  Google Scholar 

  • Yu, H. Z., Xia, N., & Liu, Z. F. (1999). SERS titration of 4-mercaptopyridine self-assembled monolayers at aqueous buffer/gold interfaces. Analytical Chemistry, 71, 1354–1358. DOI: 10.1021/ac981131+.

    Article  CAS  Google Scholar 

  • Zhao, J., Luo, L., Yang, X., Wang, E., & Dong, S. (1999). Determination of surface pK a of SAM using an electrochemical titration method. Electroanalysis, 11, 1108–1113. DOI: 10.1002/(sici)1521-4109(199911)11:15〈1108::aidelan1108〉3.0.co;2-z.

    Article  CAS  Google Scholar 

  • Zhou, J., & Wipf, D. O. (1997). Deposition of conducting polyaniline patterns with the scanning electrochemical microscope. Journal of the Electrochemical Society, 144, 1202–1207. DOI: 10.1149/1.1837573.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Osman Solak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tekin-Celebi, S., Solak, A.O., Ustundag, Z. et al. Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements. Chem. Pap. 66, 1146–1156 (2012). https://doi.org/10.2478/s11696-012-0237-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0237-0

Keywords

Navigation