Advertisement

Chemical Papers

, Volume 67, Issue 3, pp 254–264 | Cite as

Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa

  • Miroslav HorníkEmail author
  • Anna Šuňovská
  • Denisa Partelová
  • Martin Pipíška
  • Jozef Augustín
Original Paper

Abstract

The sorption of thioflavine T (TT) and malachite green (MG) cationic synthetic dyes on dried biomass of green microalga (Chlorella pyrenoidosa) immobilised in polyurethane foam under continuous column systems conditions using spectrophotometric methods of detection was investigated. Data characterising the sorption of TT and MG on microalgal biomass immobilised in polyurethane foam in a column system from single (C 0 = 25 μmol dm−3) or binary equimolar (C 0 = 25 μmol dm−3) dye solutions in the form of breakthrough curves were well described by the Thomas (R 2 = 0.994–0.912), Yoon-Nelson (R 2 = 0.994–0.911), and Clark (R 2 = 0.993–0.911) models. Useful parameters characterising the sorption column system were obtained from these mathematical models. The Thomas model, in particular, provided the Q max (maximal sorption capacity in μmol g−1) parameter for characterisation of biosorbent and also for evaluation of competitive effects in the TT and MG dyes sorption. For the purposes of biomass regeneration, a one-step desorption of the dyes studied from the microalgal biomass in batch and continuous column systems was performed. Efficiency of TT desorption from microalgal biomass increased in the order: deionised H2O (50.7 %), 99.5 vol. % 1,4-dioxane (67 %), 20 mmol dm−3 NiCl2 (83 %), 96 vol. % ethanol (85 %), 0.1 mol dm−3 HCl (89 %), 1 mol dm−3 acetic acid (89 %). In the case of MG, the desorption efficiency increased in the order: deionised H2O (13 %), 20 mmol dm−3 NiCl2 (50 %), 0.1 mol dm−3 HCl (91 %), 99.5 vol. % 1,4-dioxane (94 %), 1 mol dm−3 acetic acid (99 %), 96 vol. % ethanol (> 99 %). The presence of carboxyl, phosphoryl, amino, and hydroxyl groups, the important functional groups for sorption of cationic xenobiotics, was also confirmed on the algae biomass surface by potentiometric titration and ProtoFit modelling software. The data obtained showed that the dried immobilised algae biomass could be used as a sorbent for removing toxic xenobiotics from liquid wastewaters or contaminated waters and also presenting the possibilities of mathematical modelling of sorption processes in continuous column systems in order to obtain important parameters for use in practice.

Keywords

synthetic dyes sorption desorption Chlorella pyrenoidosa continuous column system, modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026. DOI: 10.1016/j.procbio.2004.04.008.CrossRefGoogle Scholar
  2. Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1–8. DOI: 10.2478/s11696-010-0083-x.CrossRefGoogle Scholar
  3. Bohart, G., & Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society, 42, 523–544. DOI: 10.1021/ja01448a018.CrossRefGoogle Scholar
  4. Bradbury, M. H., & Baeyens, B. (2009). Sorption modelling on illite Part I: Titration measurements and the sorption of Ni, Co, Eu and Sn. Geochimica et Cosmochimica Acta, 73, 990–1003. DOI: 10.1016/j.gca.2008.11.017.CrossRefGoogle Scholar
  5. Branquinho, C., & Brown, D. H. (1994). A method for studying the cellular location of lead in lichens. The Lichenologist, 26, 83–90. DOI: 10.1006/lich.1994.1007.Google Scholar
  6. Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination, 285, 22–30. DOI: 10.1016/j.desal.2011.09.023.CrossRefGoogle Scholar
  7. Chen, G. Q., Zeng, G. M., Tang, L., Du, C. Y., Jiang, X. Y, Huang, G. H., Liu, H. L., & Shen, G. L. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresources Technology, 99, 7034–7040. DOI: 10.1016/j.biortech.2008.01.020.CrossRefGoogle Scholar
  8. Clark, R. M. (1987). Evaluating the cost and performance of field-scale granular activated carbon systems. Environmental Science & Technology, 21, 573–580. DOI: 10.1021/es00160a008.CrossRefGoogle Scholar
  9. Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, I. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645. DOI: 10.1016/j.jhazmat.2008.06.042.CrossRefGoogle Scholar
  10. Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2010). Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes. Bioresource Technology, 101, 9500–9507. DOI: 10.1016/j.biortech.2010.07.102.CrossRefGoogle Scholar
  11. Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2012). Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips. Bioresource Technology, 106, 55–62. DOI: 10.1016/j.biortech.2011.12.003.CrossRefGoogle Scholar
  12. Gad, H. M. H., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168, 1070–1081. DOI: 10.1016/j.jhazmat.2009.02.155.CrossRefGoogle Scholar
  13. Gao, J. F., Zhang, Q., Su, K., & Wang, J. H. (2010). Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules: Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies. Bioresource Technology, 101, 5793–5801. DOI: 10.1016/j.biortech.2010.02.091.CrossRefGoogle Scholar
  14. Hornik, M., Pipiška, M., Augustin, J., Lesny, J., & Baratova, Z. (2007a). Distribution of 137Cs and 60Co in fresh water plants. Cereal Research Communications, 35, 477–480. DOI: 10.1556/crc.35.2007.2.78.CrossRefGoogle Scholar
  15. Hornik, M., Pipiška, M., Augustin, J., Lesny, J., & Kočiova, M. (2007b). Distribution of 137Cs and 60Co in components of fresh water system. Cereal Research Communications, 35, 473–476. DOI: 10.1556/crc.35.2007.2.77.CrossRefGoogle Scholar
  16. Khataee, A. R. Zarei, M., Dehghan, G., Ebadi, E., & Pourhassan, M. (2011). Biotreatment of a triphenylmethane dye solution using a Xanthophyta alga: Modeling of key factors by neural network. Journal of the Taiwan Institute of Chemical Engineers, 42, 380–386. DOI: 10.1016/j.jtice.2010.08.006.CrossRefGoogle Scholar
  17. Koprivanac, N., & Kusic, H. (2008). Hazardous organic pollutants in colored wastewaters (pp. 81). New York, NY, USA: Nova Science Publishers.Google Scholar
  18. Lim, S. L., Chu, W. L., & Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101, 7314–7322. DOI: 10.1016/j.biortech.2010.04.092.CrossRefGoogle Scholar
  19. Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138. DOI: 10.1016/j.wasman.2006.06.009.CrossRefGoogle Scholar
  20. Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25, 113–152. DOI: 10.1080/07388550500248571.CrossRefGoogle Scholar
  21. Muhamad, H., Doan, H., & Lohi, A. (2010). Batch and continuous fixed-bed column biosorption of Cd2+ and Cu2+. Chemical Engineering Journal, 158, 369–377. DOI: 10.1016/j.cej.2009.12.042.CrossRefGoogle Scholar
  22. Naja, G., & Volesky, B. (2006). Multi-metal biosorption in a fixed-bed flow-through column. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 194–201. DOI: 10.1016/j.colsurfa.2006.02.040.CrossRefGoogle Scholar
  23. Park, D. H., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15, 86–102. DOI: 10.1007/s12257-009-0199-4.CrossRefGoogle Scholar
  24. Rao, K. S., Anand, S., & Venkateswarlu, P. (2011). Modeling the kinetics of Cd(II) adsorption on Syzygium cumini L. leaf powder in a fixed bed mini column. Journal of Industrial and Engineering Chemistry, 17, 174–181. DOI: 10.1016/j.jiec.2011.02.003.CrossRefGoogle Scholar
  25. Rathinam, A., Maharshi, B., Janardhanan, S. K., Jonnalagadda, R. R., & Nair, B. U. (2010). Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresource Technology, 101, 1466–1470. DOI: 10.1016/j.biortech.2009. 08.008.CrossRefGoogle Scholar
  26. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textiles effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. DOI: 10.1016/s0960-8524(00)00080-8.CrossRefGoogle Scholar
  27. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13. DOI: 10.1016/j.desal.2011.07.019.CrossRefGoogle Scholar
  28. Tang, L., Zeng, G. M., Shen, G. L., Li, Y. P., Zhang, Y., & Huang, D. L. (2008). Rapid detection of picloram in agricultural field samples using a disposable immunomembranebased electrochemical sensor. Environmental Science & Technology, 42, 1207–1212. DOI: 10.1021/es7024593.CrossRefGoogle Scholar
  29. Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666. DOI: 10.1021/ja01238a017.CrossRefGoogle Scholar
  30. Turner, B. F., & Fein, J. B. (2006). Protofit: A program for determining surface protonation constants from titration data. Computers & Geosciences, 32, 1344–1356. DOI: 10.1016/j.cageo.2005.12.005.CrossRefGoogle Scholar
  31. Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93, 154–168. DOI: 10.1016/j.jenvman.2011.09.012.CrossRefGoogle Scholar
  32. Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291. DOI: 10.1016/j.biotechadv.2008.02.002.CrossRefGoogle Scholar
  33. Volesky, B. (2003). Sorption and biosorption (pp. 316). Quebec, Canada: BV Sorbex.Google Scholar
  34. Wang, J. L., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226. DOI: 10.1016/j.biotechadv.2008.11.002.CrossRefGoogle Scholar
  35. Yan, G. G., Viraraghavan, T., & Chen, M. (1999). A new model for heavy metal removal in a biosorption column. Adsorption Science & Technology, 19, 25–43. DOI: 10.1260/0263617011493953.CrossRefGoogle Scholar
  36. Yoon, Y. H., & Nelson, J. H. (1984). Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time. American Industrial Hygiene Association Journal, 45, 509–516. DOI: 10.1080/15298668491400197.Google Scholar
  37. Zhang, Y. S., Liu, W. G., Xu, M., Zheng, F., & Zhao, M. J. (2010). Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass. Journal of Hazardous Materials, 178, 1085–1093. DOI: 10.1016/j.jhazmat.2010.02.051.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Miroslav Horník
    • 1
    Email author
  • Anna Šuňovská
    • 1
  • Denisa Partelová
    • 1
  • Martin Pipíška
    • 1
  • Jozef Augustín
    • 1
  1. 1.Department of Ecochemistry and Radioecology, Faculty of Natural SciencesUniversity of SS. Cyril and Methodius in TrnavaTrnavaSlovakia

Personalised recommendations