Skip to main content
Log in

Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

MoS2 sheathed carbon nanotubes have been successfully synthesized using a hydrothermal route under controlled conditions. The resultant material was studied by XRD, EDS, HRTEM, and Raman spectroscopy. Advantages of the preparation presented here compared to other methods are: a) lower reaction temperature, b) high yield of sheathed nanotubes including ends and full body, c) simple process with non-toxic materials, and d) no damage inflicted to nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajayan, P. M., Schadler, L. S., Giannaris, C., & Rubio, A. (2000). Single-walled carbon nanotube-polymer composites: Strength and weakness. Advanced Materials, 12, 750–753. DOI: 10.1002/(SICI)1521-4095(200005)12:10〈750::AIDADMA750〉3.0.CO;2-6.

    Article  CAS  Google Scholar 

  • Byrappa, K., & Yoshimura, M. (2001). Handbook of hydrothermal technology. Park Ridge, NJ, USA: Noyes Publications.

    Google Scholar 

  • Chang, C. H., & Chan, S. S. (1981). Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2. Journal of Catalysis, 72, 139–148. DOI: 10.1016/0021-9517(81)90085-3.

    Article  CAS  Google Scholar 

  • Chen, C. S., Chen, X. H., Hu, J., Zhang, H., Li, W. H., Xu, L. S., & Yang, Z. (2005). Effect of multi-walled carbon nanotubes on tribological properties of lubricant. Transactions of Nonferrous Metals Society of China, 15, 300–305.

    CAS  Google Scholar 

  • Cheng, H. M., Yang, Q. H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39, 1447–1454. DOI: 10.1016/s0008-6223(00)00306-7.

    Article  CAS  Google Scholar 

  • Hsu, W. K., Zhu, Y. Q., Kroto, H. W., Walton, D. R. M., Kamalakaran, R., & Terrones, M. M. (2000). C-MoS2 and C-WS2 nanocomposites. Applied Physics Letters, 77, 4130–4132. DOI: 10.1063/1.1329326.

    Article  CAS  Google Scholar 

  • Jarvis, S. P., Uchihashi, T., Ishida, T., Tokumoto, H., & Nakayama, Y. (2000). Local solvation shell measurement in water using a carbon nanotube probe. Journal of Physical Chemistry B, 104, 6091–6094. DOI: 10.1021/jp001616d.

    Article  CAS  Google Scholar 

  • Jiménez-Sandoval, S., Yang, D., Frindt, R. F., & Irwin, J. C. (1991). Raman study and lattice dynamics of single molecular layers of MoS2. Physical Review B, 44, 3955–3962. DOI: 10.1103/PhysRevB.44.3955.

    Article  Google Scholar 

  • Ko, F. H., Lee, C. Y., Ko, C. J., & Chu, T. C. (2005). Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel. Carbon, 43, 727–733. DOI: 10.1016/j.carbon.2004.10.042.

    Article  CAS  Google Scholar 

  • Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J., & Dai, H. J. (2000). Nanotube molecular wires as chemical sensors. Science, 287, 622–625. DOI: 10.1126/science. 287.5453.622.

    Article  CAS  Google Scholar 

  • Koroteev, V. O., Bulusheva, L.G., Asanov, I. P., Shlyakhova, E. V., Vyalikh, D. V., & Okotrub, A. V. (2011). Charge transfer in the MoS2/carbon nanotube composite. Journal of Physical Chemistry C, 115, 21199–21204. DOI: 10.1021/jp205939e.

    Article  CAS  Google Scholar 

  • Liang, K. S., Chianelli, R. R., Chien, F. Z., & Moss, S. C. (1986). Structure of poorly crystalline MoS2 — A modeling study. Journal of Non-Crystalline Solids, 79, 251–273. DOI: 10.1016/0022-3093(86)90226-7.

    Article  CAS  Google Scholar 

  • Liu, Z. L., Lin, X. H., Lee, J.Y., Zhang, W. D., Han, M., & Gan, L. M. (2002). Preparation and characterization of platinumbased electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir, 18, 4054–4060. DOI: 10.1021/la0116903.

    Article  CAS  Google Scholar 

  • Niederberger, M., Muhr, H. J., Krumeich, F., Bieri, F., Günther, D., & Nesper, R. (2000). Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chemistry of Materials, 12, 1995–2000. DOI: 10.1021/cm001028c.

    Article  CAS  Google Scholar 

  • Peng, Y. Y., Meng, Z. Y., Zhong, C., Lu, J., Yu, W. C., Yang, Z. P., & Qian, Y. T. (2001). Hydrothermal synthesis of MoS2 and its pressure-related crystallization. Journal of Solid State Chemistry, 159, 170–173. DOI: 10.1006/jssc.2001.9146.

    Article  CAS  Google Scholar 

  • Peng, Y. T., Hu, Y. Z., & Wang, H. (2007). Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribology Letters, 25, 247–253. DOI: 10.1007/s11249-006-9176-7.

    Article  CAS  Google Scholar 

  • Satio, Y., Hamaguchi, K., Hata, T., Tohji, K., Kasuya, A., & Nishina, Y. (1997). Field emission patterns from single-walled carbon nanotubes. Japanese Journal of Applied Physics Part 2, 36, L1340–L1342. DOI: 10.1143/JJAP.36.L1340.

    Article  Google Scholar 

  • Song, X. C., Xu, Z. D., Zheng, Y. F., Han, G., Liu, B., & Chen, W. X. (2004). Molybdenum disulfide sheathed carbon nanotubes. Chinese Chemical Letters, 15, 623–626.

    CAS  Google Scholar 

  • Tenne, R., Margulis, L., Genut, M., & Hodes, G. (1992). Polyhedral and cylindrical structures of tungsten disulphide. Nature, 360, 444–446. DOI: 10.1038/360444a0.

    Article  CAS  Google Scholar 

  • Tian, Y., He, Y., & Zhu, Y. F. (2004). Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods. Materials Chemistry and Physics, 87, 87–90. DOI: 10.1016/j.matchemphys.2004.05.010.

    Article  CAS  Google Scholar 

  • Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C., & Yan, Y. S. (2004). Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Letters, 4, 345–348. DOI: 10.1021/nl034952p.

    Article  CAS  Google Scholar 

  • Weber, T., Muijsers, J. C., & Niemantsverdriet, J. W. (1995). Structure of amorphous MoS3. Journal of Physical Chemistry, 99, 9194–9200. DOI: 10.1021/j100022a037.

    Article  CAS  Google Scholar 

  • Whitby, R. L. D., Hsu, W. K., Fearon, P. K., Billingham, N. C., Maurin, I., Kroto, H. W., Walton, D. R. M., Boothroyd, C. B., Firth, S., Clark, R. J. H., & Collison, D. (2002). Multiwalled carbon nanotubes coated with tungsten disulfide. Chemistry of Materials, 14, 2209–2217. DOI: 10.1021/cm011282k.

    Article  CAS  Google Scholar 

  • Windom, B. C., Sawyer, W. G., & Hahn, D. W. (2011). A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribology Letters, 42, 301–310. DOI: 10.1007/s11249-011-9774-x.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Lin, G. D., Zhou, Z. H., Dong, X., & Chen, T. (2002). Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon, 40, 2429–2436. DOI: 10.1016/s0008-6223(02)00148-3.

    Article  CAS  Google Scholar 

  • Zhou, W., Ooi, Y. H., Russo, R., Papanek, P., Luzzi, D. E., Fisher, J. E., Bronikowski, M. J., Willis, P. A., & Smalley, R. E. (2001). Structural characterization and diameter-depend oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chemical Physics Letters, 350, 6–14. DOI: 10.1016/s0009-2614(01)01237-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Chiñas-Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robles-Nuñez, J., Chiñas-Castillo, F., Sanchez-Rubio, M. et al. Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes. Chem. Pap. 66, 1130–1136 (2012). https://doi.org/10.2478/s11696-012-0227-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0227-2

Keywords

Navigation