Skip to main content
Log in

Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Biological molecules such as enzymes, cells, antibodies, lectins, peptide aptamers, and cellular components in an immobilized form are extensively used in biotechnology, in biorecognition and in many medicinal applications. This review provides a comprehensive summary of the developments in new immobilization materials, techniques, and their practical applications previously developed by the authors. A detailed overview of several immobilization materials and technologies is given here, including bead cellulose, encapsulation in ionotropic gels and polyelectrolyte complexes, and various immobilization protocols applied onto surfaces. In addition, the review summarises the screening and design of an immobilization protocol, practical applications of immobilized biocatalysts in the industrial production of metabolites, monitoring, and control of fermentation processes, preparation of electrochemical/optical biosensors and biofuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arica, M. Y., & Hasirci, V. (1993). Immobilization of glucose oxidase: a comparison of entrapment and covalent bonding. Journal of Chemical Technology and Biotechnology, 58, 287–292. DOI: 10.1002/jctb.280580313.

    CAS  Google Scholar 

  • Arica, M. Y., Alaeddinoğlu, N. G., & Hasirci, V. (1998). Immobilization of glucoamylase onto activated pHEMA/EGDMA microspheres: properties and application to a packed-bed reactor. Enzyme and Microbial Technology, 22, 152–157. DOI: 10.1016/s0141-0229(97)00139-7.

    Article  CAS  Google Scholar 

  • Barthelmebs, L., Calas-Blanchard, C., Istamboulie, G., Marty, J. L., & Noguer, T. (2010). Biosensors as analytical tools in food fermentation industry. Bio-farms for nutraceuticals: Advances in experimental medicine and biology, 698, 293–307. DOI: 10.1007/978-1-4419-7347-4 22.

    Article  CAS  Google Scholar 

  • Bertók, T., Gemeiner, P., Mikula, M., & Tkac, J. (2012a). An ultrasensitive electrochemical label-free detection of a glycoprotein by a lectin-based biosensor device. Analytical and Bioanalytical Chemistry, submitted for press.

  • Bertók, T., Šefčovičová, J., Gemeiner, P., & Tkáč J. (2012b). Lectinomics: A tool in clinical diagnostics. Chemické Listy, 106, 20–26. (in Slovak)

    Google Scholar 

  • Bertók, T., Šefčovičová, J., Gemeiner, P., & Tkáč J. (2012c). Development and current trends in manufacture of nanostructure biosensors. Chemické Listy, 106, 174–181. (in Slovak)

    Google Scholar 

  • Betancor, L., & Luckarift, H. R. (2008). Bioinspired enzyme encapsulation for biocatalysis. Trends in Biotechnology, 26, 566–572. DOI: 10.1016/j.tibtech.2008.06.009.

    Article  CAS  Google Scholar 

  • Bílková, Z., Castagna, A., Zanusso, G., Farinazzo, A., Monaco, S., Damoc, E., Przybylski, M., Beneš, M., Lenfeld, J., Viovy, J. L., & Righetti, P. G. (2005). Immunoaffinity reactors for prion qualitative analysis. Proteomics, 5, 639–647. DOI: 10.1002/pmic.200401016.

    Article  CAS  Google Scholar 

  • Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilization. Biotechnology Letters, 31, 1639–1650. DOI: 10.1007/s10529-009-0076-4.

    Article  CAS  Google Scholar 

  • Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprstý, V., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006.

    Article  CAS  Google Scholar 

  • Bučko, M., Vikartovská, A., Gemeiner, P., Lacík, I., Kolláriková, G., & Marison, I. W. (2006). Nocardia tartaricans cells immobilized in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine)capsules: mechanical resistance and operational stability. Journal of Chemical Technology and Biotechnology, 81, 500–504. DOI: 10.1002/jctb.1466.

    Article  CAS  Google Scholar 

  • Bučko, M., Gemeiner, P., Vikartovská, A., Mislovičová, D., Lacík, I., & Tkčá, J. (2010). Coencapsulation of oxygen carriers and glucose oxidase in polyelectrolyte complex capsules for the enhancement of D-gluconic acid and δ-gluconolactone production. Artificial Cells, Blood Substitutes and Biotechnology, 38, 90–98. DOI: 10.3109/10731191003634745.

    Article  CAS  Google Scholar 

  • Bučko, M., Schenkmayerová, A., Gemeiner, P., Vikartovská, A., Mihovilovič, M. D., & Lacík, I. (2011). Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzyme and Microbial Technology, 49, 284–288. DOI: 10.1016/j.enzmictec.2011.05.013.

    Article  CAS  Google Scholar 

  • Chien, L. J., & Lee, C. K. (2008). Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle. Biotechnology and Bioengineering, 100, 223–230. DOI: 10.1002/bit.21750.

    Article  CAS  Google Scholar 

  • Cowan, D. A., & Fernandez-Lafuente, R. (2011). Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 49, 326–346. DOI: 10.1016/j.enzmictec.2011.06.023.

    Article  CAS  Google Scholar 

  • Czichocki, G., Dautzenberg, H., Capan, E., & Vorlop, K. D. (2001). New and effective entrapment of polyelectrolyteenzyme-complexes in LentiKats. Biotechnology Letters, 23, 1303–1307. DOI: 10.1023/a:1010569322537.

    Article  CAS  Google Scholar 

  • Danielsson, B., & Mosbach, K. (1988). Enzyme thermistors. In S. P. Colowick, & N. O. Kaplan (Eds.), Methods in enzymology, (Vol. 137, pp. 181–197). San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Dautzenberg, H. (1997). Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: Polyelectrolyte complex formation in the presence of NaCl. Macromolecules, 30, 7810–7815. DOI: 10.1021/ma970803f.

    Article  CAS  Google Scholar 

  • Davis, J. J., Tkac, J., Laurenson, S., & Ferrigno, P. K. (2007). Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold. Analytical Chemistry, 79, 1089–1096. DOI: 10.1021/ac061863z.

    Article  CAS  Google Scholar 

  • Davis, J. J., Tkac, J., Humphreys, R., Buxton, A. T., Lee, T. A., & Ferrigno, P. K. (2009). Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms. Analytical Chemistry, 81, 3314–3320. DOI: 10.1021/ac802513n.

    Article  CAS  Google Scholar 

  • de Vos, P., Bučko, M., Gemeiner, P., Navrátil, M., Švitel, J., Faas, M., Strand, B. L., Skjak-Braek, G., Morch, Y. A., Vikartovská, A., Lacík, I., Kolláriková, G., Orive, G., Poncelet, D., Pedraz, J. L., & Ansorge-Schumacher, M. B. (2009). Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials, 30, 2559–2570. DOI: 10.1016/j.biomaterials.2009.01.014.

    Article  CAS  Google Scholar 

  • Ding, W. A., & Vorlop, K. D. (1995). German Patent DE No. 4327923. Munich, Germany: Deutches Patent- und Markenamt.

  • Eckermann, A. L., Feld, D. J., Shaw, J. A., & Meade, T. J. (2010). Electrochemistry of redox-active self-assembled monolayers. Coordination Chemistry Reviews, 254, 1769–1802. DOI: 10.1016/j.ccr.2009.12.023.

    Article  CAS  Google Scholar 

  • Fam, D. W. H., Palaniappan, A., Tok, A. I. Y., Liedberg, B., & Moochhala, S. M. (2011). A review on technological aspects influencing commercialization of carbon nanotube sensors. Sensors and Actuators B: Chemical, 157, 1–7. DOI: 10.1016/j.snb.2011.03.040.

    Article  CAS  Google Scholar 

  • Ferapontova, E. E., Shleev, S., Ruzgas, T., Stoica, L., Christenson, A., Tkac, J., Yaropolov, A. I., & Gorton, L. (2005). Direct electrochemistry of proteins and enzymes. In E. Paleček, F. Scheller, & J. Wang (Eds.), Perspectives in bioanalysis: 1 Electrochemistry of nucleic acids and proteins (pp. 517–598). London, UK: Elsevier.

    Google Scholar 

  • Filip, J., Šefčovičová, J., Tomčík, P., Gemeiner, P., & Tkac, J. (2011). A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta, 84, 355–361. DOI: 10.1016/j.talanta.2011.01.004.

    Article  CAS  Google Scholar 

  • Filip, J., Gemeiner, P., Tomčík, P., & Tkáč, J. (2012a). Microbial fuel cells — features and development. Chemické Listy, 106, 158–165. (in Czech)

    CAS  Google Scholar 

  • Filip, J., Šefčovičová, J., Gemeiner, P., & Tkac, J. (2012b). Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochimica Acta, submittedfor press.

  • Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353, 2885–2904. DOI: 10.1002/adsc.201100534.

    Article  CAS  Google Scholar 

  • Gavrilescu, M., & Chisti, Y. (2005). Biotechnology-a sustainable alternative for chemical industry. Biotechnology Advances, 23, 471–499. DOI: 10.1016/j.biotechadv.2005.03.004.

    Article  CAS  Google Scholar 

  • Gemeiner, P. (1992). Natural carriers for immobilized biosystems. In P. Gemeiner (Ed.), Enzyme engineering. Immobilized biosystems (pp. 15–75, pp. 110–117). Bratislava, Slovakia: Ellis Horwood & Alfa Publishers.

    Google Scholar 

  • Gemeiner, P., Zemek, J., & Vojtisek, V. (1987). Immobilized enzymes. In P. Gemeiner (Ed.), Enzyme engineering (pp. 126–182). Bratislava, Slovakia: Alfa Publishers. (in Slovak)

    Google Scholar 

  • Gemeiner, P., Štefuca, V., & Báleš, V. (1993). Biochemical engineering of biocatalysts immobilized on cellulose materials. Enzyme and Microbial Technology, 15, 551–566. DOI: 10.1016/0141-0229(93)90017-v.

    Article  CAS  Google Scholar 

  • Gemeiner, P., Rexová-Benková, Ł., Švec, F., & Norrlöw, O. (1994). Natural and synthetic carriers suitable for immobilization of viable cells, active organelles and molecules. In I. A. Veliky, & R. J. C. McLean (Eds.), Immobilized biosystems: Theory and practical applications (pp. 1–128). London, UK: Chapman & Hall.

    Google Scholar 

  • Gemeiner, P., Dočolomanská, P., Vikartovská, A., & Štefuca, V. (1998). Amplification of flow micro-calorimetry signal by means of multiple bioaffinity layering of lectin and glycoenzyme. Biotechnology and Applied Biochemistry, 28, 155–162. DOI: 10.1111/j.1470-8744.1998.tb00525.x.

    CAS  Google Scholar 

  • Gemeiner, P., Mislovičová, D., Tkáč, J., Švitel, J., Pätoprstý, V., Hrabárová, E., Kogan, G., & Kožár, T. (2009). Lectinomics: II. A highway to biomedical/clinical diagnostics. Biotechnology Advances, 27, 1–15. DOI: 10.1016/j.biotechadv.2008.07.003.

    CAS  Google Scholar 

  • Gröger, H., Capan, E., Barthuber, A., & Vorlop, K. D. (2001). Asymetric synthesis of an (R)-cyanohydrin using enzymes entrapped in lens-shaped gels. Organic Letters, 3, 1969–1972. DOI: 10.1021/ol015920g.

    Article  CAS  Google Scholar 

  • Grosová, Z., Rosenberg, M., Rebroš, M., Šipocz, M., & Sedláčková, B. (2008). Entrapment of β-galactosidase in polyvinylalcohol hydrogel. Biotechnology Letters, 30, 763–767. DOI: 10.1007/s10529-007-9606-0.

    Article  CAS  Google Scholar 

  • Hernandez, K., & Fernandez-Lafuente, R. (2011). Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology, 48, 107–122. DOI: 10.1016/j.enzmictec.2010.10.003.

    Article  CAS  Google Scholar 

  • Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108, 462–493. DOI: 10.1021/cr068107d.

    Article  CAS  Google Scholar 

  • Hucík, M., Bučko, M., Gemeiner, P., Štefuca, V., Vikartovská, A., Mihovilovič, M. D., Rudroff, F., Iqbal, N., Chorvát, D., Jr., & Lacík, I. (2010). Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer-Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnology Letters, 32, 675–680. DOI: 10.1007/s10529-010-0203-2.

    Article  CAS  Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0.

    Article  CAS  Google Scholar 

  • Kalimuthu, P., Tkac, J., Kappler, U., Davis, J. J., & Bernhardt, P. V. (2010). Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase. Analytical Chemistry, 82, 7374–7379. DOI: 10.1021/ac101493y.

    Article  CAS  Google Scholar 

  • Katrlík, J., Mastihuba, V., Voštiar, I., Šefčovičová, J., Štefuca, V., & Gemeiner, P. (2006). Amperometric biosensors based on two different enzyme systems and their use for glycerol determination in samples from biotechnological fermentation process. Analytica Chimica Acta, 566, 11–18. DOI: 10.1016/j.aca.2006.02.063.

    Article  CAS  Google Scholar 

  • Katrlík, J., Voštiar, I., Šefčovičová, J., Tkáč, J., Mastihuba, V., Valach, M., Štefuca, V., & Gemeiner, P. (2007). A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Analytical and Bioanalytical Chemistry, 388, 287–295. DOI: 10.1007/s00216-007-1211-5.

    Article  CAS  Google Scholar 

  • Katrlík, J., Švitel, J., Gemeiner, P., Kožár, T., & Tkac, J. (2010). Glycan and lectin microarrays for glycomics and medicinal applications. Medicinal Research Reviews, 30, 394–418. DOI: 10.1002/med.20195.

    Google Scholar 

  • Katrlík, J., Škrabana, R., Mislovičová, D., & Gemeiner, P. (2011). Binding of D-mannose-containing glycoproteins to D-mannose-specific lectins studied by surface plasmon resonance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382, 198–202. DOI: 10.1016/j.colsurfa.2011.01.020.

    Article  CAS  Google Scholar 

  • Kim, J., Grate, J. W., & Wang, P. (2008). Nanobiocatalysis and its potential applications. Trends in Biotechnology, 26, 639–646. DOI: 10.1016/j.tibtech.2008.07.009.

    Article  CAS  Google Scholar 

  • Korecká, L., Bílková, Z., Holčápek, M., Královsky, J., Beneš, M., Lenfeld, J., Minc, N., Cecal, R., Viovy, J. L., & Przybylski, M. (2004). Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments. Journal of Chromatography B, 808, 15–24. DOI: 10.1016/j.jchromb.2004.04.035.

    Article  CAS  Google Scholar 

  • Kurillova, Ł., Gemeiner, P., Vikartovska, A., Mikova, H., Rosenberg, M., & Ilavsky, M. (2000). Calcium pectate gel beads for cell entrapment. 6. Morphology of stabilized and hardened calcium pectate gel beads with cells for immobilized biotechnology. Journal of Microencapsulation, 17, 279–296. DOI: 10.1080/026520400288265.

    Article  CAS  Google Scholar 

  • Lacík, I. (2004). Polyelectrolyte complexes for microcapsule formation: In V. Nedović, & R. Willaert (Eds.), Focus on biotechnology, Fundamentals of cell immobilisation biotechnology (pp. 103–120). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lacík, I. (2006). Polymer chemistry in diabetes treatment by encapsulated islets of Langerhans: Review to 2006. Australian Journal of Chemistry, 59, 508–524. DOI: 10.1071/ch06197.

    Article  CAS  Google Scholar 

  • Laurent, N., Haddoub, R., & Flitsch, S. L. (2008). Enzyme catalysts on solid surfaces. Trends in Biotechnology, 26, 328–337. DOI: 10.1016/j.tibtech.2008.03.003.

    Article  CAS  Google Scholar 

  • Lozinsky, V. I., & Plieva, F. M. (1998). Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme and Microbial Technology, 23, 227–242. DOI: 10.1016/s0141-0229(98)00036-2.

    Article  CAS  Google Scholar 

  • Maksymovych, P., Voznyy, O., Dougherty, D. B., Sorescu, D. C., & Yates, J. T., Jr. (2010). Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Progress in Surface Science, 85, 206–240. DOI: 10.1016/j.progsurf.2010.05.001.

    Article  CAS  Google Scholar 

  • Malík, F. (2006). Study of dynamic behavior of systems with immobilized biocatalyst. PhD. thesis, Slovak University of Technology, Bratislava, Slovakia.

    Google Scholar 

  • Malík, F., & Štefuca, V. (2002). Acetylcholine esterase — dynamic behaviour with flow calorimetry. Chemical Papers, 56, 406–411.

    Google Scholar 

  • Malík, F., Štefuca, V., & Báleš, V. (2004). Investigation of kinetics of immobilized liver esterase by flow calorimetry. Journal of Molecular Catalysis B — Enzymatic, 29, 81–87. DOI: 10.1016/j.molcatb.2003.12.016.

    Article  CAS  Google Scholar 

  • Masárová, J., Mislovičová, D., Mendichi, R., Švitel, J., Gemeiner, P., & Danielsson, B. (2004). Mannan-penicillin G acylase neoglycoproteins and their potential applications in biotechnology. Biotechnology and Applied Biochemistry, 39, 285–291. DOI: 10.1042/ba20030169.

    Article  Google Scholar 

  • Mislovičová, D., Masárová, J., Švitel, J., & Gemeiner, P. (2002a). Influence of mannan epitopes in glycoproteins-Concanavalin A interaction. Comparison of natural and synthetic glycosylated proteins. International Journal of Biological Macromolecules, 30, 251–258. DOI: 10.1016/s0141-8130(02)00035-1.

    Google Scholar 

  • Mislovicová, D., Masárová, J., Svitel, J., Mendichi, R., Soltés, L., Gemeiner, P., & Danielsson, B. (2002b). Neoglycoconjugates of mannan with bovine serum albumin and their interaction with lectin concanavalin A. Bioconjugate Chemistry, 13, 136–142.

    Article  CAS  Google Scholar 

  • Mislovičová, D., Masárová, J., Vikartovská, A., Gemeiner, P., & Michalková, E. (2004). Biospecific immobilization of mannan-penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose. Journal of Biotechnolology, 110, 11–19. DOI: 10.1016/j.jbiotec.2004.01.006.

    Article  CAS  Google Scholar 

  • Mislovičová, D., Masárová, J., Hostinová, E., Gašperík, J., & Gemeiner, P. (2006). Modulation of biorecognition of glucoamylases with Concanavalin A by glycosylation via recombinant expression. International Journal of Biological Macromolecules, 39, 286–290. DOI: 10.1016/j.ijbiomac.2006.04.005.

    Article  CAS  Google Scholar 

  • Mislovičová, D., Michálková, E., & Vikartovská, A. (2007). Immobilized glucose oxidase on different supports for biotransformation removal of glucose from oligosaccharide mixtures. Process Biochemistry, 42, 704–709. DOI: 10.1016/j.procbio.2006.11.001.

    Article  CAS  Google Scholar 

  • Mislovičová, D., Gemeiner, P., Kozarova, A. & Kožár, T. (2009a). Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia, 64, 1–19. DOI: 10.2478/s11756-009-0029-3.

    Article  CAS  Google Scholar 

  • Mislovičová, D., Turjan, J., Vikartovská, A., & Pätoprstý, V. (2009b). Removal of D-glucose from a mixture with D-mannose using immobilized glucose oxidase. Journal of Molecular Catalysis B: Enzymatic, 60, 45–49. DOI: 10.1016/j.molcatb.2009.03.009.

    Article  CAS  Google Scholar 

  • Mislovičová, D., Pätoprstý, V., & Vikartovská, A. (2010). Enzymatic oxidation and separation of various saccharides with immobilized glucose oxidase. Applied Biochemistry and Biotechnology, 162, 1669–1677. DOI: 10.1007/s12010-010-8948-6.

    Article  CAS  Google Scholar 

  • Mislovičová, D., Katrlík, J., Paulovičová, E., Gemeiner, P., & Tkac, J. (2012). Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins. Colloids and Surfaces B: Biointerfaces, 94, 163–169. DOI: 10.1016/j.colsurfb.2012.01.036.

    Article  CAS  Google Scholar 

  • Mosbach, K., & Danielsson, B. (1974). An enzyme thermistor. Biochimica et Biophysica Acta (BBA) — Enzymology, 364, 140–145. DOI: 10.1016/0005-2744(74)90141-7.

    Article  CAS  Google Scholar 

  • Nahálka, J. (2008). Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to α-D-glucose-1-phosphate. Journal of Industrial Microbiology & Biotechnology, 35, 219–223. DOI: 10.1007/s10295-007-0287-4.

    Article  CAS  Google Scholar 

  • Nahálka, J., Wu, B., Shao, J., Gemeiner, P., & Wang, P. G. (2004). Production of cytidine 5′-monophospho-N-acetyl-β-D-neuraminic acid (CMP-sialic acid) using enzymes or whole cells entrapped in calcium pectate-silica-gel beads. Biotechnology and Applied Biochemistry, 40, 101–106. DOI: 10.1042/ba20030159.

    Article  Google Scholar 

  • Nahálka, J., Gemeiner, P., Bučko, M., & Wang, P. G. (2006). Bioenergy beads: A tool for regeneration of ATP/NTP in biocatalytic synthesis. Artificial Cells, Blood Substitutes and Biotechnology, 34, 515–521. DOI: 10.1080/10731190600862886.

    Article  CAS  Google Scholar 

  • Nahalka, J., & Nidetzky, B. (2007). Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates. Biotechnology and Bioengineering, 97, 454–461. DOI: 10.1002/bit.21244.

    Article  CAS  Google Scholar 

  • Nahálka, J., Vikartovská, A., & Hrabárová, E. (2008). A crosslinked inclusion body process for sialic acid synthesis. Journal of Biotechnolology, 134, 146–153. DOI: 10.1016/j.jbiotec.2008.01.014.

    Article  CAS  Google Scholar 

  • Nahálka, J., Mislovičová, D., & Kavcová, H. (2009). Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins. Molecular BioSystems, 5, 819–821. DOI: 10.1039/b900526a.

    Article  CAS  Google Scholar 

  • Nahálka, J., & Pätoprstý, V. (2009). Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Organic & Biomolecular Chemistry, 7, 1778–1780. DOI: 10.1039/b822549b.

    Article  CAS  Google Scholar 

  • Nahálková, J., Švitel, J., Gemeiner, P., Danielsson, B., Pribulová, B., & Petruš, L. (2002). Affinity analysis of lectin interaction with immobilized C- and O-glycosides studied by surface plasmon resonance assay. Journal of Biochemical and Biophysical Methods, 52, 11–18. DOI: 10.1016/s0165-022x(02)00016-7.

    Article  Google Scholar 

  • Navrátil, M., Tkčá, J., Švitel, J., Danielsson, B., & Šturdík, E. (2001). Monitoring of the bioconversion of glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cell using thermometric flow injection analysis. Process Biochemistry, 36, 1045–1052. DOI: 10.1016/s0032-9592(00)00298-3.

    Article  Google Scholar 

  • Navrátil, M., Gemeiner, P., Klein, J., Šturdík, E., Malovíková, A., Nahálka, J., Vikartovská, A., Dömény, Z., & Šmogrovičová, D. (2002). Properties of hydrogel materials used for entrapment of microbial cells in production of fermented beverages. Artifical Cells, Blood Substitutes and Immobilization Biotechnology, 30, 199–218. DOI: 10.1081/bio-120004340.

    Article  Google Scholar 

  • Ortner, V., Kaspar, C., Halter, C., Töllner, L., Mykhaylyk, O., Walzer, J., Günzburg, W. H., Dangerfield, J. A., Hohenadl, C., & Czerny, T. (2012) Magnetic field-controlled gene expression in encapsulated cells. Journal of Controlled Release, 158, 424–432. DOI: 10.1016/j.jconrel.2011.12.006.

    Article  CAS  Google Scholar 

  • Prüsse, U., Bilancetti, L., Bučko, M., Bugarski, B., Bukowski, J., Gemeiner, P., Lewińska, D., Manojlovic, V., Massart, B., Nastruzzi, C., Nedovic, V., Poncelet, D., Siebenhaar, S., Tobler, L., Tosi, A., Vikartovská, A., & Vorlop, K. D. (2008). Comparison of different technologies for alginate beads production. Chemical Papers, 62, 364–374. DOI: 10.2478/s11696-008-0035-x.

    Article  CAS  Google Scholar 

  • Pumera, M. (2011). Graphene in biosensing. Materials Today, 14, 308–315. DOI: 10.1016/s1369-7021(11)70160-2.

    Article  CAS  Google Scholar 

  • Rebroš, M., Rosenberg, M., Stloukal, R., & Krištofíková, Ł. (2005). High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats®. Letters in Applied Microbiology, 41, 412–416. DOI: 10.1111/j.1472-765x.2005.01770.x.

    Article  CAS  Google Scholar 

  • Rebroš, M., Rosenberg, M., Mlichová, Z., Krištofíková, Ł., & Paluch, M. (2006). A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis. Enzyme and Microbial Technology, 39, 800–804. DOI: 10.1016/j.enzmictec.2006.01.001.

    Article  CAS  Google Scholar 

  • Rebroš, M., Rosenberg, M., Mlichová, Z., & Krištofíková, Ł. (2007). Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chemistry, 102, 784–787. DOI: 10.1016/j.foodchem.2006.06.020.

    Article  CAS  Google Scholar 

  • Rich, R. L., & Myszka, D. G. (2010). Grading the commercial optical biosensor literature-Class of 2008: ‘The Mighty Binders’. Journal of Molecular Recognition, 23, 1–64. DOI: 10.1002/jmr.1004.

    Article  CAS  Google Scholar 

  • Rodrigues, R. C., Berenguer-Murcia, á., & Fernandez-Lafuente, R. (2011). Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Advanced Synthesis and Catalysis, 353, 2216–2238. DOI: 10.1002/adsc.201100163.

    Article  CAS  Google Scholar 

  • Rosenberg, M., Rebroš, M., Krištofíková, L., & Malatová, K. (2005). High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats. Biotechnology Letters, 27, 1943–1947. DOI: 10.1007/s10529-005-3907-y.

    Article  CAS  Google Scholar 

  • Rotková, J., Šuláková, R., Korecká, L., Zdražilová, P., Jandová, M., Lenfeld, J., Horák, D., & Bílková, Z. (2009). Laccase immobilized on magnetic carriers for biotechnology applications. Journal of Magnetism and Magnetic Materials, 321, 1335–1340. DOI: 10.1016/j.jmmm.2009.02.034.

    Article  CAS  Google Scholar 

  • Schenkmayerová, A., Bučko, M., Gemeiner, P., Chorvát, D., & Lacík, I. (2012). Viability of free and encapsulated Escherichia coli overexpressing cyclopentanone monooxygenase monitored during model Baeyer-Villiger biooxidation by confocal laser scanning microscopy. Biotechnology Letters, 34, 309–314. DOI: 10.1007/s10529-011-0765-7.

    Article  CAS  Google Scholar 

  • Scouten, W. H., Luong, J. H. T., & Brown, R. S. (1995). Enzyme or protein immobilization techniques for applications in biosensor design. Trends in Biotechnology, 13, 178–185. DOI: 10.1016/s0167-7799(00)88935-0.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Katrlík, J., Štefuca, V., Mastihuba, V., Voštiar, I., Greif, G., Bučko, M., Tkac, J., & Gemeiner, P. (2008). A filtration probe-free on-line monitoring of glycerol during fermentation by a biosensor device. Enzyme and Microbial Technology, 42, 434–439. DOI: 10.1016/j.enzmictec.2008.01.006.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Vikartovská, A., Pätoprstý, V., Magdolen, P., Katrlík, J., Tkac, J., & Gemeiner, P. (2009). Off-line FIA monitoring of D-sorbitol consumption during L-sorbose production using a sorbitol biosensor. Analytica Chimica Acta, 644, 68–71. DOI: 10.1016/j.aca.2009.04.012.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Filip, J., Gemeiner, P., Vikartovská, A., Pätoprstý, V., & Tkac, J. (2011a). High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochemistry Communications, 13, 966–968. DOI: 10.1016/j.elecom.2011.06.013.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Filip, J., Tomčík, P., Gemeiner, P., Bučko, M., Magdolen, P., & Tkac, J. (2011b). A biopolymer-based carbon nanotube interface integrated with a redox shuttle and a D-sorbitol dehydrogenase for robust monitoring of D-sorbitol. Microchimica Acta, 175, 21–30. DOI: 10.1007/s00604-011-0641-0.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012). Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033–1039. DOI: 10.1007/s10529-012-0875-x.

    Article  CAS  Google Scholar 

  • Sheldon, R. A. (2011). Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Applied Microbiology and Biotechnology, 92, 467–477. DOI: 10.1007/s00253-011-3554-2.

    Article  CAS  Google Scholar 

  • Skerra, A. (2007). Alternative non-antibody scaffolds for molecular recognition. Current Opinion in Biotechnology, 18, 295–304. DOI: 10.1016/j.copbio.2007.04.010.

    Article  CAS  Google Scholar 

  • Štefuca, V., Gemeiner, P., Kurillová, Ł., Dautzenberg, H., Polakovič, M., & Báleš, V. (1991). Polyelectrolyte complex capsules as a material for enzyme immobilization. Applied Biochemistry and Biotechnology, 30, 313–324. DOI: 10.1007/bf02922035.

    Article  Google Scholar 

  • Štefuca, V., & Gemeiner, P. (1999). Investigation of catalytic properties of immobilized enzymes and cells by flow microcalorimetry. Thermal Biosensors, Bioactivity, Bioaffinitty. Advances in Biochemical Engineering — Biotechnology, 64, 69–99. DOI: 10.1007/3-540-49811-7 3.

    Article  Google Scholar 

  • Štefuca, V., Čipáková, I., & Gemeiner, P. (2001). Investigation of immobilized glucoamylase kinetics by flow calorimetry. Thermochimica Acta, 378, 79–85. DOI: 10.1016/s0040-6031(01)00589-5.

    Article  Google Scholar 

  • Štefuca, V., Voštiar, I., Šefčovičová, J., Katrlík, J., Mastihuba, V., Greifová, M., & Gemeiner, P. (2006). Development of enzyme flow calorimeter system for monitoring of microbial glycerol conversion. Applied Microbiology and Biotechnology, 72, 1170–1175. DOI: 10.1007/s00253-006-0420-8.

    Article  CAS  Google Scholar 

  • Švitel, J., Dzgoev, A., Ramanathan, K., & Danielsson, B. (2000). Surface plasmon resonance based pesticide assay on a renewable biosensing surface using the reversible concanavalin A monosaccharide interaction. Biosensors and Bioelectronics, 15, 411–415. DOI: 10.1016/s0956-5663(00)00099-3.

    Article  Google Scholar 

  • Švitel, J., Tkčá, J., Voštiar, I., Navrátil, M., Štefuca, V., Bučko, M., & Gemeiner, P. (2006). Gluconobacter in biosensors: applications of whole cells and enzymes isolated from gluconobacter and acetobacter to biosensor construction. Biotechnology Letters, 28, 2003–2010. DOI: 10.1007/s10529-006-9195-3.

    Article  CAS  Google Scholar 

  • Svitel, J., Tkac, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Microbial biosensors and biofuel cells based on acetobacter and gluconobacter cells. In R. Comeaux, & P. Novotny (Eds.), Biosensors: Properties, materials and applications (pp. 247–264). New York, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Thümmler, K., Fisher, S., Feldner, A., Weber, V., Ettenauer, M., Loth, F., & Falkenhagen, D. (2011). Preparation and characterization of cellulose microspheres. Cellulose, 18, 135–142. DOI: 10.1007/s10570-010-9465-z.

    Article  CAS  Google Scholar 

  • Tkčá, J., Gemeiner, P., Švitel, J., Benikovsky, T., Šturdík, E., Vala, V., Petruš, L., & Hrabárová, E. (2000). Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Analytica Chimica Acta, 420, 1–7. DOI: 10.1016/s0003-2670(00)01001-1.

    Article  Google Scholar 

  • Tkčá, J., Navrátil, M., Šturdík, E., & Gemeiner, P. (2001a). Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme and Microbial Technology, 28, 383–388. DOI: 10.1016/s0141-0229(00)00328-8.

    Article  Google Scholar 

  • Tkčá, J., Voštiar, I., Šturdík, E., Gemeiner, P., Mastihuba, V., & Annus, J. (2001b). Fructose biosensor based on D-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane. Analytica Chimica Acta, 439, 39–46. DOI: 10.1016/s0003-2670(01)01021-2.

    Article  Google Scholar 

  • Tkčá, J., Voštiar, I., Gemeiner, P., & Šturdík, E. (2002a). Stabilization of ferrocene leakage by physical retention in a cellulose acetate membrane. The fructose biosensor. Bioelectrochemistry, 55, 149–151. DOI: 10.1016/s1567-5394(01)00130-x.

    Article  Google Scholar 

  • Tkac, J., Vostiar, I., Gemeiner, P., & Sturdik, E. (2002b). Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochemistry, 56, 127–129. DOI: 10.1016/s1567-5394(02)00054-3.

    Article  CAS  Google Scholar 

  • Tkac, J., Vostiar, I., Gorton, L., Gemeiner, P., & Sturdik, E. (2003). Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosensors and Bioelectronics, 18, 1125–1134. DOI: 10.1016/s0956-5663(02)00244-0.

    CAS  Google Scholar 

  • Tkčá, J., Štefuca, V., & Gemeiner, P. (2005). Biosensors with immobilised microbial cells using amperometric and thermal detection principles. In V. Nedović, & R. Willaert (Eds.), Applications of cell immobilisation biotechnology: Focus on biotechnology (pp. 549–566). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Tkac, J., & Ruzgas, T. (2006). Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochemistry Communications, 8, 899–903. DOI: 10.1016/j.elecom.2006.03.028.

    CAS  Google Scholar 

  • Tkac, J., Whittaker, J. W., & Ruzgas, T. (2007). The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 22, 1820–1824. DOI: 10.1016/j.bios.2006.08.014.

    Article  CAS  Google Scholar 

  • Tkac, J., & Davis, J. J. (2008). An optimised electrode pre-treatment for SAM formation on polycrystalline gold. Journal of Electroanalytical Chemistry, 621, 117–120. DOI: 10.1016/j.jelechem.2008.04.010.

    Article  CAS  Google Scholar 

  • Tkac, J., & Davis, J. J. (2009). Label-free field effect protein sensing. In J. J. Davis (Ed.), Engineering the bioelectronic interface: Applications to analyte biosensing and protein detection (pp. 193–224). Cambridge, UK: Royal Society of Chemistry.

    Google Scholar 

  • Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 76, 53–62. DOI: 10.1016/j.bioelechem.2009.02.013.

    Article  CAS  Google Scholar 

  • Uhlich, T., Ulbricht, M., & Tomaschewski, G. (1996). Immobilization of enzymes in photochemically cross-linked polyvinyl alcohol. Enzyme and Microbial Technology, 19, 124–131. DOI: 10.1016/0141-0229(95)00190-5.

    Article  CAS  Google Scholar 

  • Upadhyayula, V. K. K., & Gadhamshetty, V. (2010). Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: A review. Biotechnology Advances, 28, 802–816. DOI: 10.1016/j.biotechadv.2010.06.006.

    Article  CAS  Google Scholar 

  • Vaithilingam, V., & Tuch, B. E. (2011). Islet transplantation and encapsulation: an update on recent developments. The Review of Diabetic Studies, 8, 63–79. DOI: 10.1900/rds.2011.8.51.

    Article  Google Scholar 

  • Valach, M., Katrlík, J., Šturdík, E., & Gemeiner, P. (2009). Ethanol Gluconobacter biosensor designed for flow injection analysis: Application in ethanol fermentation off-line monitoring. Sensors and Actuators B: Chemical, 138, 581–586. DOI: 10.1016/j.snb.2009.02.017.

    Article  CAS  Google Scholar 

  • Vikartovská, A., Bučko, M., Gemeiner, P., Nahálka, J., Pätoprstý, V., & Hrabárová, E. (2004). Flow calorimetry-A useful tool for determination of immobilized cis-epoxysuccinate hydrolase activity from Nocardia tartaricans. Artifical Cells, Blood Substitutes and Biotechnology, 32, 77–89. DOI: 10.1081/BIO-120028670.

    Article  CAS  Google Scholar 

  • Vikartovská, A., Bučko, M., Mislovičová, D., Pätoprstý, V., Lacík, I., & Gemeiner, P. (2007). Improvement of the stability of glucose oxidase via encapsulation in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules. Enzyme and Microbial Technology, 41, 748–755. DOI: 10.1016/j.enzmictec.2007.06.010.

    Article  CAS  Google Scholar 

  • Volkert, B., Wolf, B., Fischer, S., Li, N., & Lou, C. (2009). Application of modified bead cellulose as a carrier of active ingredients. Macromolecular Symposia, 280, 130–135. DOI: 10.1002/masy.200950615.

    Article  CAS  Google Scholar 

  • Vostiar, I., Tkac, J., Sturdik, E., & Gemeiner, P. (2002). Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe. Bioelectrochemistry, 56, 113–115. DOI: 10.1016/s1567-5394(02)00042-7.

    Article  CAS  Google Scholar 

  • Vostiar, I., Tkac, J., & Mandenius, C. F. (2003). Monitoring of the heat-shock response in Escherichia coli using an optical biosensor. Analytical Biochemistry, 322, 156–163. DOI: 10.1016/j.ab.2003.07.019.

    Article  CAS  Google Scholar 

  • Vostiar, I., Tkac, J., & Mandenius, C. F. (2004). Off-line monitoring of bacterial stress response during recombinant protein production using an optical biosensor. Journal of Biotechnology, 111, 191–201. DOI: 10.1016/j.jbiotec.2004.04.007.

    Article  CAS  Google Scholar 

  • Vostiar, I., Tkac, J., & Mandenius, C. F. (2005). Intracellular monitoring of superoxide dismutase expression in an Escherichia coli fed-batch cultivation using on-line disruption with at-line surface plasmon resonance detection. Analytical Biochemistry, 342, 152–159. DOI: 10.1016/j.ab.2005.03.055.

    Article  CAS  Google Scholar 

  • Wang, P. (2006). Nanoscale biocatalyst systems. Current Opinion in Biotechnology, 17, 574–579. DOI: 10.1016/j.copbio.2006.10.009.

    Article  CAS  Google Scholar 

  • Wang, P. (2009). Multi-scale features in recent development of enzymic biocatalyst systems. Applied Biochemistry and Biotechnology, 152, 343–352. DOI: 10.1007/s12010-008-8243-y.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29, 205–212. DOI: 10.1016/j.tibtech.2011.01.008.

    Article  CAS  Google Scholar 

  • Weber, V., Ettenauer, M., Linsberger, I., Loth, F., Thümmler, K., Feldner, A., Fischer, S., & Falkenhagen, D. (2010). Funcionalization and application of cellulose microparticles as adsorbents in extracorporeal blood purification. Macromolecular Symposia, 294, 90–95. DOI: 10.1002/masy.200900042.

    Article  CAS  Google Scholar 

  • Wilson, L., Illanes, A., Pessela, B. C. C., Abian, O., Fernández-Lafuente, R., & Guisán, J. M. (2004). Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnology and Bioengineering, 86, 558–562. DOI: 10.1002/bit.20107.

    Article  CAS  Google Scholar 

  • Wittlich, P., Capan, E., Schlieker, M., Vorlop, K. D., & Jahnz, U. (2004). Entrapment in LentiKats®. In V. Nedović, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology: Focus on biotechnology (pp. 53–63). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Woodman, R., Yeh, J. T. H., Laurenson, S., & Ferrigno, P. K. (2005). Design and validation of a neutral protein scaffold for the presentation of peptide aptamers. Journal of Molecular Biology, 352, 1118–1133. DOI: 10.1016/j.jmb.2005.08.001.

    Article  CAS  Google Scholar 

  • Yeo, L. Y., Chang, H. C., Chan, P. P. Y., & Friend, J. R. (2011). Microfluidic devices for bioapplications. Small, 7, 12–48. DOI: 10.1002/smll.201000946.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gemeiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bučko, M., Mislovičová, D., Nahálka, J. et al. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chem. Pap. 66, 983–998 (2012). https://doi.org/10.2478/s11696-012-0226-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0226-3

Keywords

Navigation