Skip to main content
Log in

Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the pressure drop coefficient and the static pressure difference related to the natural vortex length and to evaluate the results for gas-particle applications. CFD simulations were carried out using a numerical technique which had been verified previously. Results obtained from the numerical simulations were compared with the experimental data. Analysis of the results showed that the pressure drop coefficient decreases with the increasing inlet velocity, becoming almost constant above a certain value of the inlet velocity. The reason is that the effect of viscous forces decreases at high Reynolds numbers. The pressure drop coefficient also decreases with the increasing exit pipe diameter and decreasing exit pipe length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chuah, T. G., Gimbun, J., & Choong, T. S. Y. (2006). A CFD study the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technology, 162, 126–132. DOI: 10.1016/j.powtec.2005.12.010.

    Article  CAS  Google Scholar 

  • Cortés, C., & Gil, A. (2007). Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science, 33, 409–452. DOI: 10.1016/j.pecs.2007.02.001.

    Article  Google Scholar 

  • Gil, A., Cortés, C., Romeo, L. M., & Velilla, J. (2002). Gasparticle flow inside cyclone diplegs with pneumatic extraction. Powder Technology, 128, 78–91. DOI: 10.1016/s0032-5910(02)00215-2.

    Article  CAS  Google Scholar 

  • Gimbun, J., Chuah, T. G., Fakhru’l-Razi, A., & Choong, T. S. Y. (2005). The influence of temperature and inlet velocity on cyclone pressure lose: a CFD study. Chemical Engineering and Processing, 44, 7–12. DOI: 10.1016/j.cep.2004.03.005.

    Article  CAS  Google Scholar 

  • Gong, A. L., & Wang, L. Z. (2004). Numerical study of gas phase flow in cyclones with the repds. Aerosol Science and Technology, 38, 506–512. DOI: 10.1080/02786820490449548.

    Article  CAS  Google Scholar 

  • Hoekstra, A. J., Derksen, J. J., & Van Den Akker, H. E. A. (1999). An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical Engineering Science, 54, 2055–2065. DOI: 10.1016/s0009-2509(98)00373-x.

    Article  CAS  Google Scholar 

  • Hoffmann, A. C., De Groot, M., & Hospers, A. (1996). The effect of the dust collection system on the flowpat-tern and separation efficiency of a gas cyclone. The Canadian Journal of Chemical Engineering, 74, 464–470. DOI: 10.1002/cjce.5450740405.

    Article  CAS  Google Scholar 

  • Karagoz, I., & Avci, A. (2005). Modelling of the pressure drop in tangential inlet cyclone separators. Aerosol Science and Technology, 39, 857–865. DOI: 10.1080/02786820500295560.

    Article  CAS  Google Scholar 

  • Karagoz, I., & Kaya, F. (2007). CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone. International Communications in Heat and Mass Transfer, 34, 1119–1126. DOI: 10.1016/j.icheatmasstransfer.2007.05.017.

    Article  CAS  Google Scholar 

  • Karagoz, I., & Kaya, F. (2009). Evaluations of turbulence models for highly swirling flows in cyclones. Computer Modeling in Engineering & Sciences, 43, 111–130. DOI: 10.3970/cmes.2009.043.111.

    Google Scholar 

  • Kaya, F., & Karagoz, I. (2008). Performance analysis of numerical schemes in swirling turbulent flows in cyclones. Current Science, 94, 1273–1278.

    Google Scholar 

  • Kaya, F., & Karagoz, I. (2009). Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg. Chemical Engineering Journal, 151, 39–45. DOI: 10.1016/j.cej.2009.01.040.

    Article  CAS  Google Scholar 

  • Kenny, L. C., & Gussman, R. A. (1997). Characterizations and modelling of a family of cyclone aerosol preseparators. Journal of Aerosol Science, 28, 677–688. DOI: 10.1016/s0021-8502(96)00455-7.

    Article  CAS  Google Scholar 

  • Kim, J. C., & Lee, K. W. (1990). Experimental study of particle collection by small cyclones. Aerosol Science and Technology, 12, 1003–1015. DOI: 10.1080/02786829008959410.

    Article  CAS  Google Scholar 

  • König, C., Büttner, H., & Ebert, F. (1991). Desing data for cyclones. Particle & Particle Systems Characterization, 8, 301–307. DOI: 10.1002/ppsc.19910080155.

    Article  Google Scholar 

  • Lapple, C. E., (1951). Processes use many collector types. Chemical Engineering, 58, 144–151.

    Google Scholar 

  • Moore, M. E., & McFarland, A. R. (1993). Performance modelling of single-inlet aerosol sampling cyclones. Environmental Science & Technology, 27, 1842–1848. DOI: 10.1021/es00046a012.

    Article  CAS  Google Scholar 

  • Obermair, S., Woisetschläger, J., & Staudinger, G. (2003). Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry. Powder Technology, 138, 239–251. DOI: 10.1016/j.powtec.2003.09.009.

    Article  CAS  Google Scholar 

  • Qian, F. P., Zhang, J. G., & Zhang, M. Y. (2006). Effects of the prolonged vertical tube on the separation performance of a cyclone. Journal of Hazardous Materials, 136, 822–829. DOI: 10.1016/j.jhazmat.2006.01.028.

    Article  CAS  Google Scholar 

  • Stairmand, C. J. (1951). The design and performance of cyclone separators. Transaction of the Institution of Chemical Engineers, 29, 356–383.

    Google Scholar 

  • Upton, S. L., Mark, D., Douglass, E. J., Hall, D. J., & Griffiths, W. D. (1994). A wind tunnel evaluation of the physical sampling efficiencies of three bioaerosol samplers. Journal of Aerosol Science, 25, 1493–1501. DOI: 10.1016/0021-8502 (94)90220-8.

    Article  CAS  Google Scholar 

  • Xiang, R. B., Park, S. H., & Lee, K. W. (2001). Effects of cone dimension on cyclone performance. Journal of Aerosol Science, 32, 549–561. DOI: 10.1016/s0021-8502(00)00094-x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat Kaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, F., Karagoz, I. Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator. Chem. Pap. 66, 1019–1025 (2012). https://doi.org/10.2478/s11696-012-0214-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0214-7

Keywords

Navigation