Skip to main content
Log in

Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Network and numerical analysis of permeation through a membrane under non-stationary, stationary, and pseudo-stationary conditions is described. A compartmentalized membrane system (feed solution|membrane|stripping solution) was represented by a linear network of capacitances, diffusion, and sorption/desorption graphs. Reticulation degree of diffusion layers sufficient for quantitative modeling of the diffusion through a homogeneous membrane was estimated. It was found that for membranes of the thickness from 0.001 cm to 0.1 cm and the diffusion coefficients from 1 × 10−7 cm2 s−1 to 1 × 10−5 cm2 s−1, the membrane (or other diffusion layer) partition into ten slices leads to simulated time lags and stationary fluxes differing from the theoretical ones by less than 0.5 % and 1 %, respectively. Extended model with two unstirred interfacial layers and the feed and stripping solution of finite volumes was applied to characterize the effects caused by possible membrane heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, J. K., & Frieden, R. W. (1987). Rigorous theory of the diaphragm cell when the diffusion coefficient depends upon concentration. Journal of Physical Chemistry, 91, 3920–3923. DOI: 10.1021/j100298a038.

    Article  CAS  Google Scholar 

  • Castilla, J., García-Hernández, M. T., Hayas, A., & Horno, J. (1996). Simulation of non-stationary electrodiffusion processes in charged membranes by the network approach. Journal of Membrane Science, 116, 107–116. DOI: 10.1016/0376-7388(96)00031-2.

    Article  CAS  Google Scholar 

  • Castilla, J., García-Hernández, M. T., Hayas, A., & Horno, J. (1997a). A network approach to analysis of nonsteady-state facilitated ionic diffusion processes. Journal of Membrane Science, 136, 101–109. DOI: 10.1016/s0376-7388(97)00157-9.

    Article  Google Scholar 

  • Castilla, J., García-Hernández, M. T., Moya, A. A., Hayas, A., & Horno, J. (1997b). A study of the transport of ions against their concentration gradient across ion-exchange membranes using the network method. Journal of Membrane Science, 130, 183–192. DOI: 10.1016/s0376-7388(97)00022-7.

    Article  CAS  Google Scholar 

  • Ceynowa, J., & Adamczak, P. (2001). Analysis of the bond graph network model of membrane reactor for olive oil hydrolysis. Separation and Purification Technology, 22–23, 443–449. DOI: 10.1016/s1383-5866(00)00173-8.

    Article  Google Scholar 

  • Couenne, F., Jallut, C., Maschke, B., Tayakout, M., & Breedveld, P. (2008). Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering, 32, 1120–1134. DOI: 1016/j.compchemeng.2007.04.012.

    Article  CAS  Google Scholar 

  • Crank, J. (1956). The mathematics of diffusion. Oxford, UK: Clarendon Press.

    Google Scholar 

  • González-Caballero, F., González-Fernández, C. F., Horno Montijano, J., & Barrú, A. H. (1988). On the simulation of nonstationary diffusion through homogeneous membranes using network thermodynamics. Zeitschrift fur Physikalische Chemie-Leipzig, 269, 1137–1146.

    Google Scholar 

  • Horno, J., González-Fernández, C. F., Hayas, A., & González-Caballero, F. (1989). Application of network thermodynamics to the computer modelling of nonstationary diffusion through heterogeneous membranes. Journal of Membrane Science, 42, 1–12. DOI: 10.1016/s0376-7388(00)82361-3.

    Article  CAS  Google Scholar 

  • Horno, J., González-Caballero, F., Hayas, A., & González-Fernández, C. F. (1990). The effect of previous convective flux on the nonstationary diffusion through membranes. Network simulation. Journal of Membrane Science, 48, 67–77. DOI: 10.1016/s0376-7388(00)80796-6.

    Article  CAS  Google Scholar 

  • Horno, J., & Castilla, J. (1994). Application of network thermodynamics to the computer simulation of non-stationary ionic transport in membranes. Journal of Membrane Science, 90, 173–181. DOI: 10.1016/0376-7388(94)80044-8.

    Article  CAS  Google Scholar 

  • Horno, J., González-Fernández, C. F., & Hayas, A. (1995). The network method for solutions of oscillating reaction-diffusion systems. Journal of Computational Physics, 118, 310–319. DOI: 1006/jcph.1995.1101.

    Article  CAS  Google Scholar 

  • Imai, Y. (1996). Network thermodynamics: analysis and synthesis of membrane transport system. Japanese Journal of Physiology, 46, 187–199. DOI: 10.2170/jjphysiol.46.187.

    Article  CAS  Google Scholar 

  • Kislik, V. S. (2010). Bulk hybrid liquid membrane with organic water-immiscible carriers: Application to chemical, biochemical, pharmaceutical, and gas separations. In V. S. Kislik (Ed.), Liquid membranes. Principles and applications in chemical separations and wastewater treatment (Chapter 5, pp. 201–275). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53218-3.00005-2.

    Google Scholar 

  • Leo, A., Hansch, C., & Elkins, D. (1971). Partition coefficients and their uses. Chemical Reviews, 71, 525–616. DOI:10.1021/cr60274a001.

    Article  CAS  Google Scholar 

  • Macey, R., & Oster, G. (2001). Berkeley Madonna: Modeling and analysis of dynamic systems (v.8.0.3) [computer software]. Berkeley, CA, USA: University of California. http://www.berkeleymadonna.com/

    Google Scholar 

  • Mikulecky, D. C. (2001). Network thermodynamics and complexity: A transition to relational systems theory. Computers & Chemistry, 25, 369–392. DOI: 10.1016/s0097-8485(01)00072-9.

    Article  CAS  Google Scholar 

  • Moya, A. A., & Horno, J. (1999). Application of the network simulation method to ionic transport in ion-exchange membranes including diffuse double-layer effects. Journal of Physical Chemistry B, 103, 10791–10799. DOI: 10.1021/jp992701s.

    Article  CAS  Google Scholar 

  • Moya, A. A., & Horno, J. (2001). Stationary electrodiffusion-adsorption processes in membranes including diffuse double layer effects: A network approach. Journal of Membrane Science, 194, 103–115. DOI: 10.1016/s0376-7388(01)00528-2.

    Article  CAS  Google Scholar 

  • Oster, G., Perelson, A., & Katchalsky, A. (1971). Network thermodynamics. Nature, 234, 393–399. DOI: 10.1038/234393a0.

    Article  Google Scholar 

  • Oster, G. F., Perelson, A. S., & Katchalsky, A. (1973). Network thermodynamics: dynamic modelling of biophysical systems. Quarterly Reviews of Biophysics, 6, 1–134. DOI: 10.1017/s0033583500000081.

    Article  CAS  Google Scholar 

  • Pabby, A. K., Rizvi, S. S. H., & Sastre Requena, A. M. (Eds.) (2009). Handbook of membrane separations: Chemical, pharmaceutical, food, and biotechnological applications. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Paterson, R. (1988). Practical application of network thermodynamics and bond graph methods to the simulation of membrane processes. Swiss Chemistry, 10, 17–20.

    CAS  Google Scholar 

  • Paterson, R. (1989). Simulation and design of membrane processes using network thermodynamics. In A. M. Mika, & T. Z. Winnicki (Eds.), Advances in membrane phenomena and processes (pp. 94–109). Wrocław, Poland: Wrocław Technical University Press.

    Google Scholar 

  • Paterson, R., & Lutfullah (1985). Simulation of transport processes using bond graph methods: I. Gas diffusion through planar membranes and systems obeying Fick’s laws. Journal of Membrane Science, 23, 59–70. DOI: 10.1016/s0376-7388(00)83134-8.

    Article  CAS  Google Scholar 

  • Peacocke, A. R. (1989). An introduction to the physical chemistry of biological organisation. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Peusner, L. (1986). Studies in network thermodynamics. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Schnakenberg, J. (1977). Thermodynamic network analysis of biological systems. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Simon, A. M., Doran, P., & Paterson, R. (1996). Assessment of diffusion coupling effects in membrane separation. Part I. Network thermodynamics modelling. Journal of Membrane Science, 109, 231–246. DOI: 10.1016/0376-7388(95)00192-1.

    Article  CAS  Google Scholar 

  • Srivastava, R. C., & Mehta, A. (1980). Network thermodynamic modelling of anisotropic membranes. Journal of Non-Equilibrium Thermodynamics, 5, 255–258. DOI: 10.1515/jnet.1980.5.4.255.

    Article  Google Scholar 

  • Wódzki, R. (1994). Dyfuzyjno-wymienny transport jonów w modelach ścian komórkowych (Exchange-diffusion of ions in cell wall mimicking synthetic membranes). Toruń, Poland: Nicolaus Copernicus University Press.

    Google Scholar 

  • Wódzki, R., & Sionkowski, G. (1995). Exchange diffusion transport of ions in liquid membranes. Part IV. Thermodynamic network analysis of nonstationary transport of divalent ions. Polish Journal of Chemistry, 69, 407–422.

    Google Scholar 

  • Wódzki, R., & Szczepański, P. (2001). Integrated process of Donnan dialysis and pertraction in a multimembrane hybrid system. Separation and Purification Technology, 22–23, 697–706. DOI: 10.1016/s1383-5866(00)00186-6.

    Article  Google Scholar 

  • Wódzki, R., & Szczepański, P. (2002). Integrated hybrid membrane systems—membrane extraction and pertraction coupled to a pervaporation process. Journal of Membrane Science, 197, 297–308. DOI: 10.1016/s0376-7388(01)00640-8.

    Article  Google Scholar 

  • Wódzki, R., Szczepańska, G., & Szczepański, P. (2004). Unsteady state pertraction and separation of cations in a liquid membrane system: Simple network and numerical model of competitive M2+ /H+ counter-transport. Separation and Purification Technology, 36, 1–16 DOI: 10.1016/s1383-5866(03)00146-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Szczepański.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczepański, P., Szczepańska, G. & Wódzki, R. Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system. Chem. Pap. 66, 999–1009 (2012). https://doi.org/10.2478/s11696-012-0204-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0204-9

Keywords

Navigation