Skip to main content
Log in

Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) nanofibres were synthesised by the chemical oxidative polymerisation method using ammonium peroxydisulphate (APS) as an oxidant/initiator. In this work, a surfactant-assisted method without shaking and stirring was used for the synthesis of PANI nanofibres. The effect was investigated of various parameters such as monomer/oxidant ratio, polymerisation temperature, and the presence of surfactant (Triton X-100 as a non-ionic surfactant) on the morphology and electrical conductivity of nanofibres. The morphology of PANI nanofibres was characterised by scanning electron microscopy and transmission electron microscopy. The results demonstrate that the morphology of PANI nanofibres was significantly influenced by the aniline/APS mole ratio, polymerisation temperature and presence of the surfactant during synthesis. The results showed that more regular and consistent nanofibres were obtained using a monomer/oxidant ratio of 4 at ambient temperature of polymerisation. PANI nanofibres with diameters in the range of 10–100 nm and length up to several μm were obtained. PANI nanofibres were also characterised using FTIR and UV-VIS absorption spectroscopy. The electrochemical behaviour of PANI nanofibres was studied by cyclic voltammetry. It was found that the electrical conductivity of PANI nanofibres increased with the increasing monomer/oxidant ratio and decreasing polymerisation temperature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1–8. DOI: 10.2478/s11696-010-0083-x.

    Article  CAS  Google Scholar 

  • Carswell, A. D. W., O’Rear, E. A., & Grady, B. P. (2003). Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: From spheres to wires to flat films. Journal of the American Chemical Society, 125, 14793–14800. DOI: 10.1021/ja0365983.

    Article  CAS  Google Scholar 

  • Chiou, N. R., & Epstein, A. J. (2005). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000.

    Article  CAS  Google Scholar 

  • Du, X. S., Zhou, C. F., & Mai, Y. W. (2008). Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. The Journal of Physical Chemistry C, 112, 19836–19840. DOI: 10.1021/jp8069404.

    Article  CAS  Google Scholar 

  • Goel, S., Gupta, A., Singh, K. P., Mehrotra, R., & Kandpal, H. C. (2007). Optical studies of polyaniline nanostructures. Materials Science and Engineering A, 443, 71–76. DOI: 10.1016/j.msea.2006.08.035.

    Article  Google Scholar 

  • He, C., Tan, Y., & Li, Y. (2003). Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid. Journal of Applied Polymer Science, 87, 1537–1540. DOI: 10.1002/app.11599.

    Article  CAS  Google Scholar 

  • Huang, H. M., Li, Z. Y., & Wang, C. (2007). An electrospinning approach to polyaniline nanofibers by template. Solid State Phenomena, 121–123, 579–582. DOI: 10.4028/www.scientific.net/ssp.121-123.579.

    Article  Google Scholar 

  • Huang, J., & Kaner, R. B. (2004). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754.

    Article  CAS  Google Scholar 

  • Jing, X., Wang, Y., Wu, D., & Qiang, J. (2007). Sonochemical synthesis of polyaniline nanofibers. Ultrasonics Sonochemistry, 14, 75–80. DOI: 10.1016/j.ultsonch.2006.02.001.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z.

    Article  CAS  Google Scholar 

  • Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n.

    Article  CAS  Google Scholar 

  • Li, G., Zhang, C., Li, Y., Peng, H., & Chen, K. (2010). Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers. Polymer, 51, 1934–1939. DOI: 10.1016/j.polymer.2010.03.004.

    Article  CAS  Google Scholar 

  • Li, G., & Zhang, Z. (2004). Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules, 37, 2683–2685. DOI: 10.1021/ma035891k.

    Article  CAS  Google Scholar 

  • Li, X., Zhuang, T., Wang, G., & Zhao, Y. (2008). Stabilizer-free conducting polyaniline nanofiber aqueous colloids and their stability. Materials Letters, 62, 1431–1434. DOI: 10.1016/j.matlet.2007.08.078.

    Article  CAS  Google Scholar 

  • Liu, J. M., & Yang, S. C. (1991). Novel colloidal polyaniline fibrils made by template guided chemical polymerization. Journal of the Chemical Society, Chemical Communications, 1991, 1529–1531. DOI: 10.1039/c39910001529.

    Article  Google Scholar 

  • Marjanović, B., Juranić, I., Mentus, S., Ćirić-Marjanović, G., & Holler, P. (2010). Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water. Chemical Papers, 64, 783–790. DOI: 10.2478/s11696-010-0064-0.

    Article  Google Scholar 

  • Martin, C. R. (1996). Membrane-based synthesis of nanomaterials. Chemistry of Materials, 8, 1739–1746. DOI: 10.1021/cm960166s.

    Article  CAS  Google Scholar 

  • Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., Story, J. G., & Bertino, M. F. (2005). Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway. Chemistry of Materials, 17, 227–229. DOI: 10.1021/cm0488478.

    Article  CAS  Google Scholar 

  • Qiang, J., Yu, Z., Wu, H., & Yun, D. (2008). Polyaniline nanofibers synthesized by rapid mixing polymerization. Synthetic Metals, 158, 544–547. DOI: 10.1016/j.synthmet.2008.03.023.

    Article  CAS  Google Scholar 

  • Qiu, H., Qi, S., Wang, D., Wang, J., & Wu, X. (2010). Synthesis of polyaniline nanostructures via soft template of sucrose octaacetate. Synthetic Metals, 160, 1179–1183. DOI: 10.1016/j.synthmet.2010.03.005.

    Article  CAS  Google Scholar 

  • Rahy, A., Sakrout, M., Manohar, S., Cho, S. J., Ferraris, J., & Yang, D. J. (2008). Polyaniline nanofiber synthesis by co-use of ammonium peroxydisulfate and sodium hypochlorite. Chemistry of Materials, 20, 4808–4814. DOI: 10.1021/cm703678m.

    Article  CAS  Google Scholar 

  • Rahy, A., & Yang, D. J. (2008). Synthesis of highly conductive polyaniline nanofibers. Materials Letters, 62, 4311–4314. DOI: 10.1016/j.matlet.2008.06.057.

    Article  CAS  Google Scholar 

  • Sarno, D. M., Manohar, S. K., & MacDiarmid, A. G. (2005). Controlled interconversion of semiconducting and metallic forms of polyaniline nanofibers. Synthetic Metals, 148, 237–243. DOI: 10.1016/j.synthmet.2004.09.038.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006.

    Article  CAS  Google Scholar 

  • Su, B., Tong, Y., Bai, J., Lei, Z., Wang, K., Mu, H., & Dong, N. (2007). Acid doped polyaniline nanofibers synthesized by interfacial polymerization. Indian Journal of Chemistry, 46A, 595–599.

    CAS  Google Scholar 

  • Subramania, A., & Devi, S. L. (2008). Polyaniline nanofibers by surfactant-assisted dilute polymerization for supercapacitor applications. Polymers for Advanced Technologies, 19, 725–727. DOI: 10.1002/pat.1016.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, J., Yang, Z., Wang, Z., Zhang, F., & Wang, S. (2008). A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology. Reactive and Functional Polymers, 68, 1435–1440. DOI: 10.1016/j.reactfunctpolym.2008.07.002.

    Article  CAS  Google Scholar 

  • Weng, S., Lin, Z., Chen, L., & Zhou, J. (2010). Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochimica Acta, 55, 2727–2733. DOI: 10.1016/j.electacta.2009.12.032.

    Article  CAS  Google Scholar 

  • Wu, C. G., & Bein, T. (1994). Conducting polyaniline filaments in a mesoporous channel host. Science, 264, 1757–1759. DOI: 10.1126/science.264.5166.1757.

    Article  CAS  Google Scholar 

  • Xing, S., Zhao, C., Jing, S., & Wang, Z. (2006). Morphology and conductivity of polyaniline nanofibers prepared by ’seeding’ polymerization. Polymer, 47, 2305–2313. DOI: 10.1016/j.polymer.2006.02.008.

    Article  CAS  Google Scholar 

  • Xing, S., Zheng, H., & Zhao, G. (2008). Preparation of polyaniline nanofibers via a novel interfacial polymerization method. Synthetic Metals, 158, 59–63. DOI: 10.1016/j.synthmet.2007.12.004.

    Article  CAS  Google Scholar 

  • Yang, C. H., Chih, Y. K., Cheng, H. E., & Chen, C. H. (2005). Nanofibers of self-doped polyaniline. Polymer, 46, 10688–10698. DOI: 10.1016/j.polymer.2005.09.044.

    Article  CAS  Google Scholar 

  • Zhang, X., Chan-Yu-King, R., Jose, A., & Manohar, S. K. (2004). Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals, 145, 23–29. DOI: 10.1016/j.synthmet.2004.03.012.

    Article  CAS  Google Scholar 

  • Zhang, C., Li, G., & Pengn, H. (2009). Large-scale synthesis of self-doped polyaniline nanofibers. Materials Letters, 63, 592–594. DOI: 10.1016/j.matlet.2008.11.041.

    Article  CAS  Google Scholar 

  • Zhang, X., & Manohar, S. K. (2004). Polyaniline nanofibers: chemical synthesis using surfactants. Chemical Communications, 2004, 2360–2361. DOI: 10.1039/b409309g.

    Article  Google Scholar 

  • Zhao, W., Ma, L., & Lu, K. (2007). Facile synthesis of polyaniline nanofibers in the presence of polyethylene glycol. Journal of Polymer Research, 14, 1–4. DOI: 10.1007/s10965-006-9069-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olad, A., Ilghami, F. & Nosrati, R. Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity. Chem. Pap. 66, 757–764 (2012). https://doi.org/10.2478/s11696-012-0197-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0197-4

Keywords

Navigation