Skip to main content
Log in

Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A mild, environmentally friendly method for reduction of aromatic nitro group to amine is reported, using zinc powder in aqueous solutions of chelating ethers. The donor ether acts as a ligand and also serves as a co-solvent. Water is the proton source. This procedure is also a new method for the activation of zinc for electron transfer reduction of aromatic nitro compounds. The reduction is accomplished in a neutral medium and other reducing groups remained unaffected. The ethers used are dioxolane, 1,4-dioxane, ethoxymethoxyethane, dimethoxymethane, 1,2-dimethoxyethane, and diglyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abiraj, K., Srinivasa, G., & Gowda, D. C. (2005). Palladiumcatalyzed simple and efficient hydrogenative cleavage of azo compounds using recyclable polymer-supported formate. Canadian Journal of Chemistry, 83, 517–520. DOI:10.1139/v05-071.

    Article  CAS  Google Scholar 

  • Ashley, J. N., Berg, S. S., & MacDonald, R. D. (1960). The search for chemotherapeutic amidines. Part XVI. Amidinoanilino-1,3,5-triazines and related compounds. Journal of the Chemical Society, 1960, 4525–4532. DOI: 10.1039/jr9600004525.

    Google Scholar 

  • Bellamy, F. D., & Ou, K. (1984). Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium. Tetrahedron Letters, 25, 839–842. DOI:10.1016/s0040-4039(01)80041-1.

    Article  CAS  Google Scholar 

  • Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.

    Article  CAS  Google Scholar 

  • Dyson, P. J., Ellis, D. J., Welton, T., & Parker, D. G. (1999). Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chemical Communications, 1999, 25–26. DOI: 10.1039/a807447j.

    Article  Google Scholar 

  • Gowda, D., Mahesh, B., & Shankare, G. (2001). Zinc-catalyzed ammonium-formate reductions: Reduction of nitro compounds. Indian Journal of Chemistry Section B, 40, 75–77.

    Google Scholar 

  • Harmon, R. E., Gupta, S. K., & Brown, D. J. (1973). Hydrogenation of organic compounds using homogeneous catalysts. Chemical Reviews, 73, 21–52. DOI: 10.1021/cr60281a003.

    Article  CAS  Google Scholar 

  • Hazlet, S. E., & Dornfeld, C. A. (1944). The reduction of aromatic nitro compounds with activated iron. Journal of the American Chemical Society, 66, 1781–1782. DOI:10.1021/ja01238a049.

    Article  CAS  Google Scholar 

  • Ho, T. L., & Wang, C. M. (1974). Reduction of aromatic nitro compounds by titanium(III) chloride. Synthesis, 1974, 45. DOI: 10.1055/s-1974-23246.

    Article  Google Scholar 

  • Johnstone, R. A. W., Willby, A. H., & Entwistle, I. D. (1985). Heterogeneous catalytic transfer hydrogenation and its relation to other methods of reduction of organic compounds. Chemical Reviews, 85, 129–170. DOI: 10.1021/cr00066a003.

    Article  CAS  Google Scholar 

  • Khan, F. A., Dash, J., Sudheer, C., & Gupta, R. K. (2003). Chemoselective reduction of aromatic nitro and azo compounds in ionic liquids using zinc and ammonium salts. Tetrahedron Letters, 44, 7783–7787. DOI: 10.1016/j.tetlet.2003.08.080.

    Article  CAS  Google Scholar 

  • Kijima, M., Nambu, Y., Endo, T., & Okawara, M. (1984). Selective reduction of monosubstituted nitrobenzenes to anilines by dihydrolipoamide-iron(II). Journal of Organic Chemistry, 49, 1434–1436. DOI: 10.1021/jo00182a023.

    Article  CAS  Google Scholar 

  • Liu, Y., Lu, Y., Prashad, M., Repic, O., & Blacklock, T. J. (2005). A practical and chemoselective reduction of nitroarenes to anilines using activated iron. Advanced Synthesis and Catalysis, 347, 217–219. DOI: 10.1002/adsc.200404236.

    Article  CAS  Google Scholar 

  • Lyle, R. E., & Lamittina, J. L. (1974). Selective hydrogenation of 2,6-dinitroanilines. Synthesis, 1974, 726–727.

    Article  Google Scholar 

  • O’Neil, M. J. (2006a). Merck Index (pp. 659). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  • O’Neil, M. J. (2006b). Merck Index (pp. 462). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  • O’Neil, M. J. (2006c). Merck Index (pp. 7284). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  • O’Neil, M. J. (2006d). Merck Index (pp. 2118). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  • O’Neil, M. J. (2006e). Merck Index (pp. 9536). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  • O’Neil, M. J. (2006f). Merck Index (pp. 6398). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  • Onopchenko, A., Sabourin, E. T., & Selwitz, C. M. (1979). Selective catalytic hydrogenation of aromatic nitro groups in the presence of acetylenes. Synthesis of (3-aminophenyl) acetylene via hydrogenation of (3-nitrophenyl)acetylene over cobalt polysulfide and ruthenium sulfide catalysts. Journal of Organic Chemistry, 44, 3671–3674. DOI: 10.1021/jo01335a011.

    Article  CAS  Google Scholar 

  • Popp, F. D., & Schultz, H. P. (1962). Electrolytic reduction of organic compounds. Chemical Reviews, 62, 19–40. DOI:10.1021/cr60215a002.

    Article  CAS  Google Scholar 

  • Ram, S., & Ehernkaufer, R. E. (1984). A general procedure for mild and rapid reduction of aliphatic and aromatic nitro compounds using ammonium formate as a catalytic hydrogen transfer agent. Tetrahedron Letters, 25, 3415–3418. DOI:10.1016/s0040-4039(01)91034-2.

    Article  CAS  Google Scholar 

  • Rinderknecht, H., Koechlin, H., & Niemann, C. (1953). Oxindolylalanine. Journal of Organic Chemistry, 18, 971–982. DOI: 10.1021/jo50014a011.

    Article  CAS  Google Scholar 

  • Sarmah, P., & Dutta, D. K. (2003). Manganese mediated aqueous reduction of aromatic nitro compounds to amines. Journal of Chemical Research, 2003, 236–237. DOI: 10.3184/030823403103173624.

    Article  Google Scholar 

  • Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 2001, 2399–2407. DOI: 10.1039/b107270f.

    Article  Google Scholar 

  • Simpson, J. C. E., Atkinson, C. M., Schofield, K., & Stephenson, O. (1945). o-Amino-ketones of the acetophenone and benzophenone types. Journal of the Chemical Society, 1945, 646–657. DOI: 10.1039/jr9450000646.

    Google Scholar 

  • Staiger, R. P., & Miller, E. B. (1959). Isatoic anhydride. IV. Reactions with various nucleophiles. Journal of Organic Chemistry, 24, 1214–1219. DOI: 10.1021/jo01091a013.

    Article  CAS  Google Scholar 

  • Steines, S., Wasserscheid, P., & Drießen-Hölscher, B. (2000). An ionic liquid as catalyst medium for stereoselective hydrogenations of sorbic acid with ruthenium complexes. Journal für Praktische Chemie, 342, 348–354. DOI: 10.1002/(SICI)1521-3897(200004)342:4<348::AID-PRAC348>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  • Tsukinoki, T., & Tsuzuki, H. (2001). Organic reaction in water. Part 5. Novel synthesis of anilines by zinc metal-mediated chemoselective reduction of nitroarenes. Green Chemistry, 3, 37–38. DOI: 10.1039/b008219h.

    Article  CAS  Google Scholar 

  • Ung, S., Falgui`eres, A., Guy, A., & Ferroud, C. (2005). Ultrasonically activated reduction of substituted nitrobenzenes to corresponding N-arylhydroxylamines. Tetrahedron Letters, 46, 5913–5917. DOI: 10.1016/j.tetlet.2005.06.126.

    Article  CAS  Google Scholar 

  • Vogel, A. I., Furniss, B. S., Hannaford, A. J., Smith, P.W.G., & Tatchel, A. R. (1989). Vogel’s text book of practical organic chemistry (5th ed.). Harlow, UK: Longman.

    Google Scholar 

  • Wasserscheid, P., & Keim, W. (2000). Ionic liquids-new “solutions” for transition metal catalysis. Angewandte Chemie International Edition, 39, 3772–3789. DOI: 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5.

    Article  CAS  Google Scholar 

  • Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI: 10.1021/cr980032t.

    CAS  Google Scholar 

  • Yuste, F., Saldaña, M., & Walls, F. (1982). Selective reduction of aromatic nitro compounds containing o- and n-benzyl groups with hydrazine and Raney nickel. Tetrahedron Letters, 23, 147–148. DOI: 10.1016/s0040-4039(00)86770-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pookot Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P.S., Lokanatha Rai, K.M. Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation. Chem. Pap. 66, 772–778 (2012). https://doi.org/10.2478/s11696-012-0195-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0195-6

Keywords

Navigation