Skip to main content
Log in

Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Geotrichum candidum CCY 16-1-29 (teleomorph Galactomyces geotrichum) is able to grow and produce polygalacturonase of remarkable activities on pectin or grape pomace as a sole carbon source. The highest activities of extracellular enzymes were found on the third and the seventh day of cultivation. After extraction and precipitation, polygalacturonases produced in these cultivation periods were characterized. Production of multiple forms of polygalacturonase was observed in both cultivation periods. Two major forms, polygalacturonase with random action pattern (endo-PGase, EC 3.2.1.15) and oligogalacturonate hydrolase (exoPGase, exopolygalacturonase preferring oligogalacturonides as substrates), as well as numerous minor forms were detected by IEF-PAGE using the print technique detection. EndoPGase was identified by mass spectrometry. The major forms have similar isoelectric points (below pH 6.0) and pH optima (4.6 and 4.8, respectively). pH optimum of 4.6 was associated with exoPGase and that of 4.8 with endoPGase. Both enzymes were stable after freeze-drying and storage at 4°C. EndoPGase had molecular mass of about 29 kDa (36 kDa by SDS-PAGE) as determined by gel filtration, temperature optimum of about 45°C and it was stable only below 35°C. Molecular mass of exoPGase was about 50 kDa, its temperature optimum was about 60°C, and it was stable to 60°C. Optimal substrate for exoPGase was a pentamer, for endoPGase it was a pectate. Values of K m for optimal substrate reached the values of 11.4 × 10−5 M for for exoPGase and 6.6 × 10−5 M for endoPGase. Pectin methylesterase as another pectolytic enzyme was also identified by mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barash, I., & Eyal, Z. (1969). Properties of a polygalacturonases produced by Geotrichum candidum. Phytopathology, 60, 27–30. DOI: 10.1094/phyto-60-27.

    Article  Google Scholar 

  • Barash, I., Zilberman, E., & Marcus, L. (1984). Purification of Geotrichum candidum endopolygalacturonase from culture and from host tissue by affinity chromatography on crosslinked polypectate. Physiological Plant Pathology, 25, 161–169. DOI: 10.1016/0048-4059(84)90054-7.

    Article  CAS  Google Scholar 

  • Birren, B. W., Lander, E. S., Galagan, J. E., Nusbaum, C., Devon, K., Ma, L. J., Jaffe, D. B., Butler, J., Alvarez, P., Gnerre, S., Grabherr, M., Kleber, M., Mauceli, E. W., Brockman, W., MacCallum, I. A., Young, S. K., LaButti, K., De-Caprio, D., Crawford, M., Koehrsen, M., Engels, R., Montgomery, P., Pearson, M., Howarth, C., Larson, L., White, J., Yandava, C., Kodira, C. D., Guigo, R., Borodovsky, M., Zeng, Q., O’Leary, S., Alvarado, L., Pandelova, I., & Ciuffetti, L. (2007). Genome sequence of Pyrenophora triticirepentis. In EMBL/GenBank/DDBJ databases.

  • Blanco, P., Sieiro, C., & Villa, T. G. (1999). Production of pectic enzymes in yeasts. FEMS Microbiology Letters, 175, 1–9. DOI: 10.1016/s0378-1097(99)00090-7.

    Article  CAS  Google Scholar 

  • Ellwood, S. R., Liu, Z. H., Syme, R. A., Lai, Z. B., Hane, J. K., Keiper, F., Moffat, C. S., Oliver, R. P., & Friesen, T. L. (2010). A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres.Genome Biology, 11, R109.1–R109.14. DOI: 10.1186/gb-2010-11-11-r109.

    Google Scholar 

  • Flodrová, D., Dzúrová, M., Lišková, D., Ait Mohand, F., Mislovičová, D., Malovíková, A., Voburka, Z., Omelková, J., & Stratilová, E. (2007). Pectate hydrolases of parsley (Petroselinum crispum) roots. Zeitschrift für Naturforschung, 62c, 382–388.

    Google Scholar 

  • Guillotin, S. (2005). Studies on the intra- and intermolecular distributions of substituents in commercial pectins. PhD. thesis, Wageningen University, The Netherlands.

    Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (1992). Production and characterization of polygalacturonase from Geotrichum candidum. World Journal of Microbiology and Biotechnology, 8, 480–482. DOI: 10.1007/bf01201944.

    Article  CAS  Google Scholar 

  • Heinrichová, K. (1983). Preparation of oligogalacturonic acids by enzymatic hydrolysis. Biologia, Bratislava, 38, 335–342.

    Google Scholar 

  • Iguchi, K., Hirano, H., Kishida, M., Kawasaki, H., & Sakai, T. (1997). Cloning of a protopectinase gene of Trichosporon penicillatum and its expression in Saccharomyces cerevisiae. Microbiology, 143, 1657–1664. DOI: 10.1099/00221287-143- 5-1657.

    Article  CAS  Google Scholar 

  • Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: A review. Process Biochemistry, 40, 2931–2944. DOI: 10.1016/j.procbio.2005.03.026.

    Article  CAS  Google Scholar 

  • Jensen, O. N., Wilm, M., Shevchenko, A., & Mann, M. (1999). Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. In A. J. Link (Ed.), Methods in molecular biology: 2-D proteome analysis protocols (Chapter 52, pp. 513-530). Totowa, NJ, USA: Humana Press. DOI: 10.1385/1-59259-584-7:513.

    Google Scholar 

  • Kohn, R., & Furda, I. (1967). Calcium ion activity in solutions of calcium pectinate. Collection of Czechoslovak Chemical Communications, 32, 1925–1937.

    CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Markovič, O., Mislovičová, D., Biely, P., & Heinrichová, K. (1992). Chromogenic substrate for endo-polygalacturonase detection in gels. Journal of Chromatography A, 603, 243–246. DOI:10.1016/0021-9673(92)85367-3.

    Article  Google Scholar 

  • Nakamura, M., Iwai, H., & Arai, K. (2002). Cloning and characterization of polygalacturonase gene Ap2pg1 from Geotrichum candidum citrus race Ap2 pathogenic to apple fruit. Journal of General Plant Pathology, 68, 333–337. DOI: 10.1007/pl00013099.

    Article  CAS  Google Scholar 

  • Nakamura, M., Iwai, H., & Arai, K. (2003). Polygalacturonase S31PG1 from Geotrichum candidum citrus race S31 expressed in Schizosaccharomyces pombe versus S31PG2 regarding soft rot on lemon fruit. Journal of General Plant Pathology, 69, 283–291. DOI: 10.1007/s10327-003-0048-9.

    Article  CAS  Google Scholar 

  • Nakamura, M., Suprapta, D. N., Iwai, H., & Arai, K. (2001). Comparison of endo-polygalacturonase activities of citrus and non-citrus races of Geotrichum candidum, and cloning and expression of the corresponding genes. Molecular Plant Pathology, 2, 265–274. DOI: 10.1046/j.1464- 6722.2001.00075.x.

    Article  CAS  Google Scholar 

  • Palanivelu, P. (2006). Polygalacturonases: Active site analyses and mechanism of action. Indian Journal of Biotechnology, 5, 148–162.

    CAS  Google Scholar 

  • Radola, B. J. (1980). Ultrathin-layer isoelectric focusing in 50–100 μm polyacrylamide gels on silanized glass plates or polyester films. Electrophoresis, 1, 43–56. DOI: 10.1002/elps.1150010109.

    Article  CAS  Google Scholar 

  • Rexová-Benková, Ľ. (1970). Separation of oligogalacturonic acids by dextran gel chromatography. Chemické Zvesti, 24, 59–62.

    Google Scholar 

  • Rexová-Benková, Ľ., & Markovič, O. (1976). Pectic enzymes. Advances in Carbohydrate Chemistry and Biochemistry, 33, 323–385. DOI: 10.1016/s0065-2318(08)60285-1.

    Article  Google Scholar 

  • Rouxel, T., Grandaubert, J., Hane, J. K., Hoede, C., van de Wouw, A. P., Couloux, A., Dominguez, V., Anthouard, V., Bally, P., Bourras, S., Cozijnsen, A. J., Ciuffetti, L. M., Degrave, A., Dilmaghani, A., Duret, L., Fudal, I., Goodwin, S. B., Gout, L., Glaser, N., Linglin, J., Kema, G. H. J., Lapalu, N., Lawrence, C. B., May, K., Meyer, M., Ollivier, B., Poulain, J., Schoch, C. L., Simon, A., Spatafora, J. W., Stachowiak, A., Turgeon, B. G., Tyler, B. M., Vincent, D., Weissenbach, J., Amselem, J., Quesneville, H., Oliver, R. P., Wincker, P., Balesdent, M. H., & Howlett, B. J. (2011). Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat- Induced Point mutations. Nature Communications, 2, 202. DOI: 10.1038/ncomms1189.

    Article  Google Scholar 

  • Schols, H. A., Visser, R. G. F., & Voragen, A. G. J. (2009). Pectins and pectinases. Wagenigen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Somogyi, M. (1952). Notes on sugar determination. The Journal of Biological Chemistry, 195, 19–23.

    CAS  Google Scholar 

  • Stratilová, E., Dzúrová, M., Breierová, E., & Omelková, J. (2006). Production and biochemical characterization of polygalacturonases produced by Aureobasidium pullulans from forest soil. Annals of Microbiology, 56, 35–40. DOI: 10.1007/bf03174967.

    Article  Google Scholar 

  • Stratilová, E., Dzúrová, M., Malovíková, A., & Omelková, J. (2005). Oligogalacturonate hydrolase from carrot roots. Zeitschrift für Naturforschung, 60c, 899–905.

    Google Scholar 

  • Visser, J., & Voragen, A. G. J. (1996). Progress in Biotechnology (Vol. 14, Pectin and pectinases). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Illková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illková, K., Zemková, Z., Flodrová, D. et al. Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace. Chem. Pap. 66, 852–860 (2012). https://doi.org/10.2478/s11696-012-0189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0189-4

Keywords

Navigation