Advertisement

Chemical Papers

, Volume 67, Issue 3, pp 274–283 | Cite as

Effect of animal age and gender on fatty acid and elemental composition in Austrian beef applicable for authentication purposes

  • Adriána BednárováEmail author
  • Ján Mocák
  • Walter Gössler
  • Margit Velik
  • Josef Kaufmann
  • Ladislav Staruch
Original Paper

Abstract

The main aim of the present study was to find differences in the content of fatty acids and variations in elemental composition in beef samples of longissimus dorsi muscle related to cattle age and gender. A further goal was to describe interrelations among the selected variables (descriptors) characterising the samples. For this purpose, an extensive data table was compiled, which contains chemical descriptors specifying forty-six beef samples originating from four well-known Austrian grassland-based beef labels. The following descriptors were investigated: (a) concentrations of 33 fatty acids, (b) concentrations of 19 elements, (c) contents of dry-mass, protein, intramuscular fat, and ash, (d) total content of saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), and poly-unsaturated fatty acids (PUFA), (e) total contents of omega-3 (n-3) and omega-6 (n-6) PUFA and their ratio. The correlation analysis provided a number of statistically significant correlations among the descriptors, which were concordant with the results of the principal component analysis and cluster analysis. Furthermore, the effect of age and gender of cattle (both acting as target factors) on the fatty acid content and elemental composition of beef was examined by analysis of variance (ANOVA) and appropriate non-parametric tests. Several important interrelations among the beef characteristics investigated were also discovered. Finally, the most relevant beef descriptors were utilised in linear discrimination analysis (LDA) for predicting the slaughter age of the cattle for beef authentication.

Keywords

beef chemical composition fatty acids elemental composition cattle age ANOVA multivariate data analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfaia, C. P. M., Alves, S. P., Martins, S. I. V., Costa, A. S. H., Fontes, C. M. G. A., Lemos, J. P. C., Bessa, R. J. B., & Prates, J. A. M. (2009). Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chemistry, 114, 939–946. DOI: 10.1016/j.foodchem.2008.10.041.CrossRefGoogle Scholar
  2. Ballin, N. Z. (2010). Authentication of meat and meat products. Meat Science, 86, 577–587. DOI: 10.1016/j.meatsci.2010.06.001.CrossRefGoogle Scholar
  3. Banskalieva, V., Sahlu, T., & Goetsch, A. L. (2000). Fatty acid composition of goat muscles and fat depots: a review. Small Ruminant Research, 37, 255–268. DOI: 10.1016/s0921-4488(00)00128-0.CrossRefGoogle Scholar
  4. Bhattacharya, A., Banu, J., Rahman, M., Causey, J., & Fernandes, G. (2006). Biological effects of conjugated linoleic acids in health and disease. The Journal of Nutritional Biochemistry, 17, 789–810. DOI: 10.1016/j.jnutbio.2006.02.009.CrossRefGoogle Scholar
  5. Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Chichester, UK: Wiley.Google Scholar
  6. De Smet, S., Raes, K., & Demeyer, D. (2004). Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research, 53, 81–98. DOI: 10.1051/animres:2004003.CrossRefGoogle Scholar
  7. Ertl, K. (2009). Quality of Austrian beef with respect to its elemental composition. In Proceedings of YISAC 2009, June 29–July 2, 2009 (pp. 60). Graz, Austria: Karl-Franzens University.Google Scholar
  8. Harris, W. S., Miller, M., Tighe, A. P., Davidson, M. H., & Schaefer, E. J. (2008). Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis, 197, 12–24. DOI: 10.1016/j.atherosclerosis.2007.11.008.CrossRefGoogle Scholar
  9. Jutzeler van Wijlen, R. P., & Colombani, P. C. (2010). Grassbased ruminant production methods and human bioconversion of vaccenic acid with estimations of maximal dietary intake of conjugated linoleic acids. International Dairy Journal, 20, 433–448. DOI: 10.1016/j.idairyj.2010.01.008.CrossRefGoogle Scholar
  10. Lourenço, M., Van Ranst, G., Vlaeminck, B., De Smet, S., & Fievez, V. (2008). Influence of different dietary forages on the fatty acid composition of rumen digesta as well as ruminant meat and milk. Animal Feed Science and Technology, 145, 418–437. DOI: 10.1016/j.anifeedsci.2007.05.043.CrossRefGoogle Scholar
  11. Malau-Aduli, A. E., Siebert, B. D., Bottema, C. D., & Pitchford, W. S. (1998). Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. Journal of Animal Science, 76, 766–773.Google Scholar
  12. Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (1997). Handbook of chemometrics and qualimetrics: Part A. Amsterdam, The Netherlands: Elsevier.Google Scholar
  13. Moloney, A. P., Scollan, N. D., & Miles, L. (2008). Enrichment of n-3 fatty acids and conjugated linoleic acid in beef: ProSafeBeef. Nutrition Bulletin, 33, 374–381. DOI: 10.1111/j.1467-3010.2008.00737.x.CrossRefGoogle Scholar
  14. Moreno, J. J., & Mitjavila, M. T. (2003). The degree of unsaturation of dietary fatty acids and the development of atherosclerosis (review). The Journal of Nutritional Biochemistry, 14, 182–195. DOI: 10.1016/s0955-2863(02)00294-2.CrossRefGoogle Scholar
  15. Mosley, E. E., Shafii, B., Moate, P. J., & McGuire, M. A. (2006). cis-9, trans-11 Conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. Journal of Nutrition, 136, 570–575.Google Scholar
  16. Pariza, M. W., Park, Y. H., & Cook, M. E. (2001). The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research, 40, 283–298. DOI: 10.1016/s0163-7827(01)00008-x.CrossRefGoogle Scholar
  17. Park, Y. H. (2009). Conjugated linoleic acid (CLA): Good or bad trans fat? Journal of Food Composition and Analysis, 22, S4–S12. DOI: 10.1016/j.jfca.2008.12.002.CrossRefGoogle Scholar
  18. Purchas, R. W., Knight, T. W., & Busboom, J. R. (2003). The effect of production system and age on concentration of fatty acids in intramuscular fat of the longissimus and triceps brachii muscles of Angus-cross heifers. Meat Science, 70, 597–603. DOI: 10.1016/j.meatsci.2004.12.020.CrossRefGoogle Scholar
  19. Raes, K., De Smet, S., & Demeyer, D. (2004). Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meet: a review. Animal Feed Science and Technology, 113, 199–221. DOI: 10.1016/j.anifeedsci.2003.09.001.CrossRefGoogle Scholar
  20. Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics, 17, 449–459. DOI: 10.1111/j.1365-277x.2004.00552.x.CrossRefGoogle Scholar
  21. Scollan, N., Hocquette, J. F., Nuernberg, K., Dannenberger, D., Richardson, I., & Moloney, A. (2006). Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 74, 17–33. DOI: 10.1016/j.meatsci.2006.05.002.CrossRefGoogle Scholar
  22. Schönfeldt, H. C., Naudé, R. T., & Boshoff, E. (2010). Effect of age and cut on the nutritional content of South African beef. Meat Science, 86, 674–683. DOI: 10.1016/j.meatsci.2010.06.004.CrossRefGoogle Scholar
  23. Simopoulos, A. P. (2004). omega-6/omega-3 Essential fatty acid ratio and chronic diseases. Food Reviews International, 20, 77–90. DOI: 10.1081/fri-120028831.CrossRefGoogle Scholar
  24. Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometrics. Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
  25. Velik, M., Eingang, D., Kaufmann, J., & Kitzer, R. (2009). Fleischqualität Oesterreichischer Rindfleisch-Markenprogramme (Ochse, Kalbin, Jungrind) — Ergebnisse einer Stichprobenerhebung. In Proceedings of the 36. Viehwirtschaftliche Fachtagung, April 16–17, 2009 (pp. 85–93). Irdning: LFZ Raumberg-Gumpenstein.Google Scholar
  26. Webb, E. C., & O’Neill, H. A. (2008). The animal fat paradox and meat quality. Meat Science, 80, 28–36. DOI: 10.1016/j.meatsci.2008.05.029.CrossRefGoogle Scholar
  27. Woods, V. B., & Fearon, A. M. (2009). Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livestock Science, 126, 1–20. DOI: 10.1016/j.livsci.2009.07.002.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Adriána Bednárová
    • 1
    Email author
  • Ján Mocák
    • 1
  • Walter Gössler
    • 2
  • Margit Velik
    • 3
  • Josef Kaufmann
    • 3
  • Ladislav Staruch
    • 4
  1. 1.Department of ChemistryUniversity of SS. Cyril and MethodiusTrnavaSlovakia
  2. 2.Institute for Chemistry, Analytical ChemistryKarl-Franzens UniversityGrazAustria
  3. 3.Department of Analytical ChemistryAgricultural Research and Education Centre Raumberg-GumpensteinIrdningAustria
  4. 4.Department of Food Science and TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations