Skip to main content
Log in

Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Tungstate sulfuric acid (TSA) was prepared, characterized, and applied for direct synthesis of novel and known benzimidazoles through a condensation reaction of o-phenylenediamines with orthoesters under solvent-free conditions. TSA was characterized by powdered X-ray diffraction (XRD), X-ray fluorescence (XRF), and FTIR spectroscopy. This novel and eco-friendly method is very cheap and has many advantages such as excellent yields, recyclable and eco-friendly catalyst, and simple work-up procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

References

  • Barker, H. A., Smyth, R. D., Weissbach, H., Toohey, J. I., Ladd, J. N., & Volcani, B. E. (1960). Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole. The Journal of Biological Chemistry, 235, 480–488.

    CAS  Google Scholar 

  • Buchstaller, H. P., Burgdorf, L., Finsinger, D., Stieber, F., Sirrenberg, C., Amendt, C., Grell, M., Zenke, F., & Krier, M. (2011). Design and synthesis of isoquinolines and benzimidazoles as RAF kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 2264–2269. DOI: 10.1016/j.bmcl.2011.02.108.

    Article  CAS  Google Scholar 

  • Damavandi, J. A., Karami, B., & Zolfigol, M. A. (2002). Selective oxidation of N-alkyl imines to oxaziridines using UHP/maleic anhydride system. Synlett, 2002, 933–934. DOI: 10.1055/s-2002-31903.

    Article  Google Scholar 

  • Davoodnia, A., Allameh, S., Fazli, S., & Tavakoli-Hoseini, N. (2011). One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst. Chemical Papers, 65, 714–720. DOI: 10.2478/s11696-011-0064-8.

    Article  CAS  Google Scholar 

  • Heydari, A., Larijani, H., Emami, J., & Karami, B. (2000). Lithium perchlorate/diethylether-catalyzed three-component coupling reactions of aldehydes, hydroxylamines and trimethylsilyl cyanide leading to α-cyanohydroxylamines. Tetrahedron Letters, 41, 2471–2473. DOI: 10.1016/s0040-4039(00)00182-9.

    Article  CAS  Google Scholar 

  • Howarth, J., & Hanlon, K. (2001). Novel N-ferrocenylmethyl, N′-methyl-2-substituted benzimidazolium iodide salts with in vitro activity against the P. falciparum malarial parasite strain NF54. Tetrahedron Letters, 42, 751–754. DOI: 10.1016/s0040-4039(00)02106-7.

    Article  CAS  Google Scholar 

  • Karami, B., Damavandi, A. J., Bayat, M., & Montazerzohori, M. (2006a). A new role of N-arylbenzoquinoneimine N-oxides in the von Richter reaction. Journal of the Serbian Chemical Society, 71, 27–30. DOI: 10.2298/jsc0601027k.

    Article  CAS  Google Scholar 

  • Karami, B., & Khodabakhshi, S. (2011). A facile synthesis of phenazine and quinoxaline (new 1,4-benzo diazine) derivatives using magnesium sulfate heptahydrate as a catalyst. Journal of the Serbian Chemical Society, 76, 1191–1198. DOI: 10.2298/jsc100801104k.

    Article  CAS  Google Scholar 

  • Karami, B., Montazerozohori, M., & Habibi, M. H. (2005). Tungstate sulfuric acid (TSA)/NaNO2 as a novel heterogeneous system for the N-nitrosation of secondary amines under mild conditions. Bulletin of the Korean Chemical Society, 26, 1125–1128. DOI: 10.5012/bkcs.2005.26.7.1125.

    Article  CAS  Google Scholar 

  • Karami, B., Montazerozohori, M., & Habibi, M. H. (2006b). Tungstate sulfuric acid: A novel and efficient solid acidic reagent for the oxidation of thiols to disulfides and the oxidative demasking of 1,3-dithianes. Phosphorous, Sulfur, and Silicon and the Related Elements, 181, 2825–2831. DOI: 10.1080/10426500600864965.

    Article  CAS  Google Scholar 

  • Kuş, C., & Altanlar, N. (2003). Synthesis of some new benzimidazole carbamate derivatives for evaluation of antifungal activity. Turkish Journal of Chemistry, 27, 35–40.

    Google Scholar 

  • Maiti, D. K., Halder, S., Pandit, P., Chatterjee, N., De Joarder, D, Pramanik, N., Saima, Y., Patra, A., & Maiti, P. K. (2009). Synthesis of glycal-based chiralbenzimidazoles by VO(acac)2-CeCl3 combo catalyst and their self-aggregated nanostructured materials. The Journal of Organic Chemistry, 74, 8086–8097. DOI: 10.1021/jo901458k.

    Article  CAS  Google Scholar 

  • Mallakpour, S. E., Karami-Descho, B., & Sheikholeslami, B. (1998). Polymerization of 1-methyl-2,5-bis[1-(4-phenylurazolyl)] pyrrole dianion with alkyldihalides. Polymer International, 45, 98–102. DOI: 10.1002/(SICI)1097-0126(199801)45:1〈98::AID-PI895〉3.0.CO;2-3.

    Article  CAS  Google Scholar 

  • Martin, A., & Kalevaru, N. V. (2010). Heterogeneously catalyzed ammoxidation: A valuable tool for one-step synthesis of nitriles. ChemCatChem, 2, 1504–1522. DOI: 10.1002/cctc.201000173.

    Article  CAS  Google Scholar 

  • Marziano, N. C., Ronchin, L., Tortato, C., Ronchin, S., & Vavasori, A. (2005). Selective oxidations by nitrosating agents: Part 2: Oxidations of alcohols and ketones over solid acid catalysts. Journal of Molecular Catalysis A: Chemical, 235, 26–34. DOI: 10.1016/j.molcata.2005.03.008.

    Article  CAS  Google Scholar 

  • Migawa, M. T., Girardet, J. L., Walker, J. A., Koszalka, G. W., Chamberlain, S. D., Drach, J. C., & Townsend, L. B. (1998). Design, synthesis, and antiviral activity of α-nucleosides: d- and l-isomers of lyxofuranosyl- and (5-deoxylyxofuranosyl)benzimidazoles. Journal of Medicinal Chemistry, 41, 1242–1251. DOI: 10.1021/jm970545c.

    Article  CAS  Google Scholar 

  • Mohammadpoor-Baltork, I., Khosropour, A. R., & Hojati, S. F. (2007). ZrOCl2·8H2O as an efficient, environmentally friendly and reusable catalyst for synthesis of benzoxazoles, benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines under solvent-free conditions. Catalysis Communications, 8, 1865–1870. DOI: 10.1016/j.catcom.2007.02.020.

    Article  CAS  Google Scholar 

  • Niknam, K., & Fatehi-Raviz, A. (2007). Synthesis of 2-substituted benzimidazoles and bis-benzimidazoles by microwave in the presence of alumina-methanesulfonic acid. Journal of the Iranian Chemical Society, 4, 438–443.

    Article  CAS  Google Scholar 

  • Ogurtsov, V. A., Rakitin, O. A., Rees, C. W., & Smolentsev, A. A. (2003). 4,5-Dichloro-1,2-dithiole-3-thione in the synthesis of benzimidazole, benzoxazole and benzothiazole derivatives of 1,3-dithioles. Mendeleev Communications, 13, 50–51. DOI: 10.1070/mc2003v013n02abeh001750.

    Article  Google Scholar 

  • Olah, G. A., Molhotra, R., & Narang, S. C. (1978). Aromatic substitution. 43. Perfluorinated resinsulfonic acid catalyzed nitration of aromatics. The Journal of Organic Chemistry, 43, 4628–4630. DOI: 10.1021/jo00418a019.

    Article  CAS  Google Scholar 

  • Preston, P. N. (1974). Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chemical Reviews, 74, 279–314. DOI: 10.1021/cr60289a001.

    Article  CAS  Google Scholar 

  • Reddy, V. P., Prasunamba, P. L., Reddy, P. S. N., & Ratnam, C. V. (1983). Synthesis of quinazolin-4-ones and benzimidazoles: fusion of 2 aminobenzamide and 1,2-diaminobenzene with organic acids. Indian Journal of Chemistry — Section B, 22B, 917–918.

    CAS  Google Scholar 

  • Romanelli, G. P., Bennardi, D. O., Autino, J. C., Baronetti, G. T., & Thomas, H. J. (2008). A simple and mild acylation of alcohols, phenols, amines, and thiols with a reusable heteropoly acid catalyst (H6P2W18O62·24H2O). E-Journal of Chemistry, 5, 641–647.

    Article  CAS  Google Scholar 

  • Romanelli, G. P., Ruiz, D. M., Autino, J. C., & Giaccio, H. E. (2010). A suitable preparation of N-sulfonyl-1,2,3,4-tetrahydroisoquinolines and their ring homologs with a reusable Preyssler heteropolyacid as catalyst. Molecular Diversity, 14, 803–807. DOI: 10.1007/s11030-009-9173-5.

    Article  CAS  Google Scholar 

  • Roquea, J. M., Pandiyana, T., Cruz, J., & García-Ochoa, E. (2008). DFT and electrochemical studies of tris(benzimidazole-2-ylmethyl)amine as an efficient corrosion inhibitor for carbon steel surface. Corrosion Science, 50, 614–624. DOI: 10.1016/j.corsci.2007.11.012.

    Article  Google Scholar 

  • Santato, C., Odziemkowski, M., Ulmann, M., & Augustynski, J. (2001). Crystallographically oriented mesoporous WO3 Films: Synthesis, characterization, and applications. Journal of the American Chemical Society, 123, 10639–10649. DOI: 10.1021/ja011315x.

    Article  CAS  Google Scholar 

  • Sharma, S., Gangal, S., & Rauf, A. (2009). Convenient one-pot synthesis of novel 2-substituted benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their in vitro antibacterial and antifungal activities. European Journal of Medicinal Chemistry, 44, 1751–1757. DOI: 10.1016/j.ejmech.2008.03.026.

    Article  CAS  Google Scholar 

  • Tamaddon, F., & Tavakoli, F. (2011). One-pot synthesis of N-tert-butyl amides from alcohols, ethers and esters using ZnCl2/SiO2 as a recyclable heterogeneous catalyst. Journal of Molecular Catalysis A: Chemical, 337, 52–55. DOI: 10.1016/j.molcata.2011.01.013.

    Article  CAS  Google Scholar 

  • Tamm, I. (1957). Ribonucleic acid synthesis and infulenza virus multiplication. Science, 126, 1235–1236. DOI: 10.1126/science.126.3285.1229.

    Google Scholar 

  • Tarte, N. H., Woo, S. I., Cui, L., Gong, Y D., & Hwang, Y. H. (2008). Novel non-chelated cobalt(II) benzimidazole complex catalysts: Synthesis, crystal structures and cocatalyst effect in vinyl polymerization of norbornene. Journal of Organometallic Chemistry, 693, 729–736. DOI: 10.1016/j.jorganchem.2007.12.001.

    Article  CAS  Google Scholar 

  • Wright, J. B. (1951). Errata and addenda — the chemistry of the benzimidazoles. Chemical Reviews, 49, 397–541. DOI: 10.1021/cr60153a603.

    Article  Google Scholar 

  • Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disul-fides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/s0040-4020(01)00960-7.

    Article  CAS  Google Scholar 

  • Zolfigol, M. A., & Bamoniri, A. (2002). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for the chemoselective N-nitrosation of secondary amines under mild conditions. Synlett, 2002, 1621–1624. DOI: 10.1055/s-2002-34230.

    Article  Google Scholar 

  • Zolfigol, M. A., Shirin, F., Choghamarani, G. A., & Mohammadpoor-Baltork, I. (2002). Silica modified sulfuric acid/NaNO2 as a novel heterogeneous system for the oxidation of 1,4-dihydropyridines under mild conditions. Green Chemistry, 4, 562–564. DOI: 10.1039/b208328k.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahador Karami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, B., Khodabakhshi, S. & Haghighijou, Z. Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles. Chem. Pap. 66, 684–690 (2012). https://doi.org/10.2478/s11696-012-0152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0152-4

Keywords

Navigation