Skip to main content
Log in

Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Any surface immersed in the aqueous reaction mixture used for the preparation of polyaniline becomes coated with a polyaniline film of submicrometre thickness. In this way, various materials can be modified by an overlayer of conducting polymer. The present review illustrates the role of infrared, Raman, and UV-VIS spectroscopies in the studies of polyaniline film growth. Spectroscopic methods are crucial in the evaluation of the performance of polyaniline films alone or in combination with nanoparticles of noble metals. The assessment of film ageing and stability can be followed conveniently by these methods. Carbonization of polyaniline films to nitrogen-containing carbon analogues is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armes, S. P. (1996). Conducting polymer colloids. Current Opinion in Colloid & Interface Science, 1, 214–220. DOI:10.1016/s1359-0294(96)80007-0.

    Article  CAS  Google Scholar 

  • Avlyanov, J. K., Josefowicz, J. Y., & MacDiarmid, A. G. (1995). Atomic force microscopy surface morphology studies of “in situ” deposited polyaniline films. Synthetic Metals, 73, 205–208. DOI: 10.1016/0379-6779(95)80017-4.

    Article  CAS  Google Scholar 

  • Ayad, M. M., Prastomo, N., Matsuda, A., & Stejskal, J. (2010). Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance. Synthetic Metals, 160, 42–46. DOI: 10.1016/j.synthmet.2009.09.030.

    Article  CAS  Google Scholar 

  • Ayad, M. M., Salahuddin, N., & Shenashin, M. A. (2004). The optimum HCl concentration for the in situ polyaniline film formation. Synthetic Metals, 142, 101–106. DOI:10.1016/j.synthmet.2003.07.009.

    Article  CAS  Google Scholar 

  • Ayad, M. M., & Torad, N. L. (2009). Alcohol vapors sensor based on thin polyaniline salt film and quartz crystal microbalance. Talanta, 78, 1280–1285. DOI: 10.1016/j.talanta.2009.01.053.

    Article  CAS  Google Scholar 

  • Ayad, M. M., & Zaki, E. A. (2009). Effect of water on inorganic acids doped polyaniline. Journal of Applied Polymer Science, 114, 1384–1389. DOI: 10.1002/app.30631.

    Article  CAS  Google Scholar 

  • Bai, H., & Shi, G. Q. (2007). Gas sensors based on conducting polymers. Sensors, 7, 267–307. DOI: 10.3390/s7030267.

    Article  CAS  Google Scholar 

  • Baibarac, M., Baltog, I., Lefrant, S., Mevellec, J. Y., & Chauvet, O. (2003). Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chemistry of Materials, 15, 4149–4156. DOI:10.1021/cm021287x.

    Article  CAS  Google Scholar 

  • Baibarac, M., Mihut, L., Louarn, G., Lefrant, S., & Baltog, I. (2000). Doping and metallic-support effect evidenced on SERS spectra of polyaniline thin films. Journal of Polymer Science, Part B: Polymer Physics, 38, 2599–2609. DOI: 10.1002/1099-0488(20001001)38:19〈2599::AIDPOLB120〉3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  • Baibarac, M., Mihut, L., Louarn, G., Mevellec, J. Y., Wery, J., Lefrant, S., & Baltog, I. (1999). Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. Journal of Raman Spectroscopy, 30, 1105–1113.

    Article  CAS  Google Scholar 

  • Bernard, M. C., & Hugot-Le Goff, A. (2006a). Quantitative characterization of polyaniline films using Raman spectroscopy I: Polaron lattice and bipolaron. Electrochimica Acta, 52, 595–603. DOI: 10.1016/j.electacta.2006.05.039.

    Article  CAS  Google Scholar 

  • Bernard, M. C., & Hugot-Le Goff, A. (2006b). Quantitative characterization of polyaniline films using Raman spectroscopy II. Effects of self-doping in sulfonated polyaniline. Electrochimica Acta, 52, 728–735. DOI: 10.1016/j.electacta.2006.05.061.

    Article  CAS  Google Scholar 

  • Bessière, A., Duhamel, C., Badot, J.C., Lucas, V., & Certiat, M. C. (2004). Study and optimization of a flexible electrochromic device based on polyaniline. Electrochimica Acta, 49, 2051–2055. DOI: 10.1016/j.electacta.2003.12.034.

    Article  CAS  Google Scholar 

  • Bhadra, S., Khastgir, D., Singha, N. K., & Lee, J. H. (2009). Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34, 783–810. DOI: 10.1016/j.progpolymsci.2009.04.003.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., Ćirić-Marjanović, G., & Sapurina, I. (2007a). Polymerization of aniline on polyaniline membranes. Journal of Physical Chemistry B, 111, 2440–2448. DOI: 10.1021/jp067370f.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., & Prokeš, J. (2006). Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer, 47, 42–48. DOI: 10.1016/j.polymer.2005.10.145.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007b). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331–2341. DOI: 10.1016/j.eurpolymj.2007.03.045.

    Article  CAS  Google Scholar 

  • Bouazza, S., Alonzo, V., & Hauchard, D. (2009). Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material. Synthetic Metals, 159, 1612–1619. DOI: 10.1016/j.synthmet.2009.04.025.

    Article  CAS  Google Scholar 

  • Boyer, M. I., Quillard, S., Louarn, G., Froyer, G., & Lefrant, S. (2000). Vibrational study of the FeCl3-doped dimer of polyaniline. A good model compound of emeraldine salt. Journal of Physical Chemistry B, 104, 8952–8961. DOI: 10.1021/jp000946v.

    Article  CAS  Google Scholar 

  • Boyer, M. I., Quillard, S., Rebourt, E., Louarn, G., Buisson, J. P., Monkman, A., & Lefrant, S. (1998). Vibrational analysis of polyaniline: A model compound approach. Journal of Physical Chemistry B, 102, 7382–7392. DOI:10.1021/jp972652o.

    Article  CAS  Google Scholar 

  • Branzoi, V., Branzoi, F., & Pilan, L. (2010). Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Surface and Interface Analysis, 42, 1266–1270. DOI: 10.1002/sia.3387.

    Article  CAS  Google Scholar 

  • Brožovřřová, J., Stejskal, J., & Trchová, M. (2008). The stability of polyaniline in strongly alkaline or acidic aqueous media. Polymer Degradation and Stability, 93, 592–600. DOI: 10.1016/j.polymdegradstab.2008.01.012.

    Article  CAS  Google Scholar 

  • Buzarovska, A., Arsova, I., & Arsov, L. (2001). Electrochemical synthesis of poly(2-methyl aniline): electrochemical and spectroscopic characterization. Journal of the Serbian Chemical Society, 66, 27–37.

    CAS  Google Scholar 

  • Canobre, S. C., Almeida, D. A. L., Polo Fonseca, C., & Neves, S. (2009). Synthesis and characterization of hybrid composites based on carbon nanotubes. Electrochimica Acta, 54, 6383–6388. DOI: 10.1016/j.electacta.2009.06.002.

    Article  CAS  Google Scholar 

  • Cao, Y. (1990). Spectroscopic studies of acceptor and donor doping of polyaniline in the emeraldine base and pernigraniline forms. Synthetic Metals, 35, 319–332. DOI: 10.1016/0379-6779(90)90216-8.

    Article  CAS  Google Scholar 

  • Chandrakanthi, N., & Careem, M. A. (2000). Preparation and characterization of fully oxidized form of polyaniline. Polymer Bulletin, 45, 113–120. DOI: 10.1007/s002890070038.

    Article  CAS  Google Scholar 

  • Chandrakanthi, N., & Careem, M. A. (2003). Optical spectroscopic studies of pernigraniline and emeraldine base forms of polyaniline. Synthetic Metals, 135–136, 337–338. DOI: 10.1016/s0379-6779(02)00609-4.

    Article  CAS  Google Scholar 

  • Chiang, J. C., & MacDiarmid, A. G. (1986). ’Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 13, 193–205. DOI: 10.1016/0379-6779(86)90070-6.

    Article  CAS  Google Scholar 

  • Chinn, D., DuBow, J., Liess, M., Josowicz, M., & Janata, J. (1995). Comparison of chemically and electrochemically prepared polyaniline films. 1. Electrical properties. Chemistry of Materials, 7, 1504–1509. DOI: 10.1021/cm00056a016.

    Article  CAS  Google Scholar 

  • Choi, H. J., & Jhon, M. S. (2009). Electrorheology of polymers and nanocomposites. Soft Matter, 5, 1562–1567. DOI: 10.1039/b818368f.

    Article  CAS  Google Scholar 

  • Choi, C. H., & Kertesz, M. (1997). Conformational studies of vibrational properties and electronic states of leucoemeraldine base and its oligomers. Macromolecules, 30, 620–630. DOI:10.1021/ma961120n.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008a). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI: 10.1016/j.synthmet.2008.01.005.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Trchová, M., Konyushenko, E. N., Holler, P., & Stejskal, J. (2008b). Chemical oxidative polymerization of aminophenylenediamines. Journal of Physical Chemistry B, 112, 6976–6987. DOI: 10.1021/jp710963e.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008c). The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI: 10.1002/jrs.2007.

    Article  CAS  Google Scholar 

  • Cochet, M., Louarn, G., Quillard, S., Boyer, M. I., Buisson, J. P., & Lefrant, S. (2000). Theoretical and experimental vibrational study of polyaniline in base forms: non-planar analysis. Part I. Journal of Raman Spectroscopy, 31, 1029–1039. DOI: 10.1002/1097-4555(200011)31:11〈1029::AID-JRS640〉3.0.CO;2-A.

    Article  CAS  Google Scholar 

  • Colomban, Ph., Folch, S., & Gruger, A. (1999) Vibrational study of short-range order and structure of polyaniline bases and salts. Macromolecules, 32, 3080–3092. DOI:10.1021/ma981018l.

    Article  CAS  Google Scholar 

  • Colomban, Ph., Gruger, A., Novak, A., & Régis, A. (1994). Infrared and Raman study of polyaniline Part I. Hydrogen bonding and electronic mobility in emeraldine salts. Journal of Molecular Structure, 317, 261–271. DOI: 10.1016/0022-2860(93)07898-7.

    Article  CAS  Google Scholar 

  • Deepshikha, & Basu, T. (2011). A review on synthesis and characterization of nanostructured conducting polymers (NSPC) and application in biosensors. Analytical Letters, 44, 1126–1171. DOI: 10.1080/00032719.2010.511734.

    Article  CAS  Google Scholar 

  • Deshpande, N.G., Gudage, Y. G., Devan, R. S., Ma, Y. R., Lee, Y. P., & Sharma, R. (2009). Room-temperature gas sensing studies of polyaniline thin films deposited on different substrates. Smart Materials and Structures, 18(9), 095010/1–6. DOI: 10.1088/0964-1726/18/9/095010.

    Article  CAS  Google Scholar 

  • Ding, H. J., Shen, J. Y., Wan, M. X., & Chen, Z. J. (2008). Formation mechanism of polyaniline nanotubes by a simpli fied template-free method. Macromolecular Chemistry and Physics, 209, 864–871. DOI: 10.1002/macp.200700624.

    Article  CAS  Google Scholar 

  • Ding, H. J., Wan, M. X., & Wei, Y. (2007). Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential. Advanced Materials, 19, 465–469. DOI: 10.1002/adma.200600831.

    Article  CAS  Google Scholar 

  • Ding, L. L., Wang, X. W., & Gregory, R. V. (1999). Thermal properties of chemically synthesized polyaniline (EB) powder. Synthetic Metals, 104, 73–78. DOI: 10.1016/s0379-6779(99)00035-1.

    Article  CAS  Google Scholar 

  • Ding, H. J., Zhu, C. J., Zhou, Z. M., Wan, M. X., & Wei, Y. (2006). Monodispersed and oriented microspheres of polyaniline. Macromolecular Chemistry and Physics, 207, 1159–1165. DOI: 10.1002/macp.200600158.

    Article  CAS  Google Scholar 

  • Dhand, C., Das, M., Datta, M., & Malhotra, B. D. (2011). Recent advances in polyaniline based biosensors. Biosensors and Bioelectronics, 26, 2811–2821. DOI: 10.1016/j.bios.2010.10.017.

    Article  CAS  Google Scholar 

  • Dolan, A. R., & Wood, T. D. (2004). Synthesis and characterization of low molecular weight oligomers of soluble polyaniline by electrospray ionization mass spectrometry. Synthetic Metals, 143, 243–250. DOI: 10.1016/j.synthmet.2003.12.010.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Constantino, V. R. L., Landers, R., & Temperini, M. L. A. (2004a). Aniline polymerization into montmorillonite clay: A spectroscopic investigation of the intercalated conducting polymer. Macromolecules, 37, 9373–9385. DOI: 10.1021/ma049054+.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Constantino, V. R. L., & Temperini, M. L. A. (2004b). Spectroscopic characterization of doped poly(benzidine) and its nanocomposite with cationic clay. Journal of Physical Chemistry B, 108, 5564–5571. DOI: 10.1021/jp037262i.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Corio, P., Novickis, R. W., Temperini, M. L. A., & Dresselhaus, M. S. (2005). Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 43, 815–822. DOI:10.1002/pola.20551.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Kobata, P. Y. G., Millen, R. P., & Temperini, M. L. A. (2007). Raman dispersion in polyaniline base forms. Synthetic Metals, 157, 247–251. DOI: 10.1016/j.synthmet.2007.02.003.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Kobata, P. Y. G., & Temperini, M. L. A. (2008a). Structural and vibrational characterization of polyaniline nanofibers prepared from interfacial polymerization. Journal of Physical Chemistry B, 112, 11551–11557. DOI: 10.1021/jp804154k.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Pereira da Silva, J. E., Córdoba de Torresi, S. I., & Temperini, M. L. A. (2002). Comparison of secondary doping and thermal treatment in poly(diphenylamine) and polyaniline monitored by resonance Raman spectroscopy. Macromolecules, 35, 121–125. DOI: 10.1021/ma010920h.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Silva, T. B., Corio, P., & Dresselhaus, M. S. (2010). Charge-transfer behavior of polyaniline single wall carbon nanotubes nanocomposites monitored by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 41, 1587–1593. DOI: 10.1002/jrs.2598.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Silva, C. H. B., Izumi, C. M. S., & Temperini, M. L. A. (2008b). The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 869–875. DOI: 10.1016/j.saa.2008.02.009.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2006). Electronic structure and doping behavior of PANINSA nanofibers investigated by resonance Raman spectroscopy. Macromolecular Rapid Communications, 27, 255–259. DOI: 10.1002/marc.200500690.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2008c). Spectroscopic characterization of the structural changes of polyaniline nanofibers after heating. Polymer Degradation and Stability, 93, 291–297. DOI: 10.1016/j.polymdegradstab.2007.09.001.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., & Temperini, M. L. A. (2008). Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation. Journal of Raman Spectroscopy, 39, 772–778. DOI: 10.1002/jrs.1841.

    Article  CAS  Google Scholar 

  • Drelinkiewicz, A., Waksmundzka-Góra, A., Sobczak, J. W., & Stejskal, J. (2007). Hydrogenation of 2-ethyl-9,10-anthraquinone on Pd-polyaniline(SiO2) composite catalyst. The effect of humidity. Applied Catalysis A: General, 333, 219–228. DOI: 10.1016/j.apcata.2007.09.011.

    Article  CAS  Google Scholar 

  • Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10, 751–758. DOI: 10.1021/nl904286r.

    Article  CAS  Google Scholar 

  • Dutta, D., Sarma, T. K., Chowdhury, D., & Chattopadhyay, A. (2005). A polyaniline-containing filter paper that acts as a sensor, acid, base, and endpoint indicator and also filters acids and bases. Journal of Colloid and Interface Science, 283, 153–159. DOI: 10.1016/j.jcis.2004.08.051.

    Article  CAS  Google Scholar 

  • El-Said, W. A., Yea, C. H., Choi, J. W., & Kwon, I. K. (2009). Ultrathin polyaniline film coated on an indium-tin oxide cellbased chip for study of anticancer effect. Thin Solid Films, 518, 661–667. DOI: 10.1016/j.tsf.2009.07.062.

    Article  CAS  Google Scholar 

  • Engert, C., Umapathy, S., Kiefer, W., & Hamaguchi, H. (1994). Dynamic structure of charge carrier in polyaniline by near-infrared excited resonance Raman spectroscopy. Chemical Physics Letters, 218, 87–92. DOI: 10.1016/0009-2614(93)e1468-v.

    Article  CAS  Google Scholar 

  • Epstein, A. J., Ginder, J. M., Zuo, F., Woo, H. S., Tanner, D. B., Richter, A. F., Angelopoulos, M., Huang, W. S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline: Effect of protonation in emeraldine. Synthetic Metals, 21, 63–70. DOI: 10.1016/0379-6779(87)90067-1.

    Article  CAS  Google Scholar 

  • Fedorova, S., & Stejskal, J. (2002). Surface and precipitation polymerization of aniline. Langmuir, 18, 5630–5632. DOI: 10.1021/la025665o.

    Article  CAS  Google Scholar 

  • Ferrer-Anglada, N., Kaempgen, M., Skákalová, V., Dettlaf-Weglikowska, U., & Roth, S. (2004). Synthesis and characterization of carbon nanotube-conducting polymer thin films. Diamond and Related Materials, 13, 256–260. DOI: 10.1016/j.diamond.2003.10.026.

    Article  CAS  Google Scholar 

  • Foreman, J. P., & Monkman, A. P. (2003). Theoretical investigations into the structural and electronic influences on the hydrogen bonding in doped polyaniline. Journal of Physical Chemistry A, 107, 7604–7610. DOI: 10.1021/jp030398w.

    Article  CAS  Google Scholar 

  • Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T., & Kawagoe, T. (1988). Vibrational spectra and structure of polyaniline. Macromolecules, 21, 1297–1305. DOI:10.1021/ma00183a020.

    Article  CAS  Google Scholar 

  • Gao, C. L., Ai, M., Li, X., & Xu, Z., (2011). Basic amino acid assisted-fabrication of rectangular nanotube, circular nanotube, and hollow microsphere of polyaniline: Adjusting and controlling effect of pH value. Journal of Polymer Science Part A: Polymer Chemistry, 49, 2173–2182. DOI:10.1002/pola.24647.

    Article  CAS  Google Scholar 

  • Germain, J., Fréchet, J. M. J., & Svec, F. (2009). Nanoporous polymers for hydrogen storage. Small, 5, 1098–1111. DOI: 10.1002/smll.200801762.

    Article  CAS  Google Scholar 

  • Gospodinova, N., & Terlemezyan, L. (1998). Conducting polymers prepared by oxidative polymerization: polyaniline. Progress in Polymer Science, 23, 1443–1484. DOI: 10.1016/s0079-6700(98)00008-2.

    Article  CAS  Google Scholar 

  • Gu, D. W., Li, J. S., Liu, J. L., Cai, Y. M., & Shen, L. J. (2005). Polyaniline thin films in situ polymerized under very high pressure. Synthetic Metals, 150, 175–179. DOI: 10.1016/j.synthmet.2005.02.009

    Article  CAS  Google Scholar 

  • Han, G. Y., Yuan, J. Y., Shi, G. Q., & Wei, F. (2005). Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films, 474, 64–69. DOI: 10.1016/j.tsf.2004.08.011.

    Article  CAS  Google Scholar 

  • Han, J., Song, G., & Guo, R. (2006). A facile solution route for polymeric hollow spheres with controllable size. Advanced Materials, 18, 3140–3144. DOI: 10.1002/adma.200600282.

    Article  CAS  Google Scholar 

  • Halvorson, C., Cao, Y., Moses, D., & Heeger, A. J. (1993). Third order nonlinear optical susceptibility of polyaniline. Synthetic Metals, 57, 3941–3944. DOI: 10.1016/0379-6779(93)90538-8.

    Article  CAS  Google Scholar 

  • Hasik, M., Paluszkiewicz, C., & Wenda, E. (2002). Interaction between polyanilines and platinum(IV) ions: vibrational spectroscopic studies. Vibrational Spectroscopy, 29, 191–195. DOI: 10.1016/s0924-2031(01)00166-7.

    Article  CAS  Google Scholar 

  • Ho, K. S., Han, Y. K., Tuan, Y. T., Huang, Y. J., Wang, Y. Z., Ho, T. H., Hsieh, T. H., Lin, J. J., & Lin, S. C. (2009). Formation and degradation mechanism of a novel nanofibrous polyaniline. Synthetic Metals, 159, 1202–1209. DOI: 10.1016/j.synthmet.2009.02.047.

    Article  CAS  Google Scholar 

  • Hopkins, A. R., Lipeles, R. A., & Hwang, S. J. (2008). Morphology characterization of polyaniline nano- and microstructures. Synthetic Metals, 158, 594–601. DOI: 10.1016/j.synthmet.2008.04.018.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016.

    Article  CAS  Google Scholar 

  • Huang, K., Meng, X. H., & Wan, M. X. (2006). Polyaniline hollow microspheres constructed with their own self-assembled nanofibers. Journal of Applied Polymer Science, 100, 3050–3054. DOI: 10.1002/app.23704.

    Article  CAS  Google Scholar 

  • Huang, Z., Wang, P. C., Feng, J., MacDiarmid, A. G., Xia, Y., & Whitesides, G. M. (1997). Selective deposition of films of polypyrrole, polyaniline and nickel on hydrophobic/hydrophilic patterned surfaces and applications. Synthetic Metals, 85, 1375–1376. DOI: 10.1016/s0379-6779(97)80279-2.

    Article  CAS  Google Scholar 

  • Hughes, M., Chen, G. Z., Shaffer, M. S. P., Fray, D. J., & Windle, A. H. (2002). Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chemistry of Materials, 14, 1610–1613. DOI: 10.1021/cm010744r.

    Article  CAS  Google Scholar 

  • Hugot-Le Goff, A., & Bernard, M. C. (1993). Protonation and oxidation processes in polyaniline thin films studied by optical multichannel analysis and in situ Raman spectroscopy. Synthetic Metals, 60, 115–131. DOI: 10.1016/0379-6779(93)91230-y.

    Article  CAS  Google Scholar 

  • Huyen, D. N., Ky, T. V., & Thanh, L. H. (2009). In situ chemically polymerised polyaniline nanolayer: characterisation and sensing materials. Journal of Experimental Nanoscience, 4, 203–212. DOI: 10.1080/17458080903236407.

    Article  CAS  Google Scholar 

  • Izumi, C. M. S., Constantino, V. R. L., & Temperini, M. L. A. (2005). Spectroscopic characterization of polyaniline formed by using copper(II) in homogeneous and MCM-41 molecular sieve media. Journal of Physical Chemistry B, 109, 22131–22140. DOI: 10.1021/jp051630w.

    Article  CAS  Google Scholar 

  • Job, A. E., Herrmann, P. S. P., Jr., Vaz, D. O., & Mattoso, L. H. C. (2001). Comparison between different conditions of the chemical polymerization of polyaniline on top of PET films. Journal of Applied Polymer Science, 79, 1220–1229. DOI: 10.1002/1097-4628(20010214)79:7〈1220::AID-APP90〉3.0.CO;2-3.

    Article  CAS  Google Scholar 

  • Josefowicz, J. Y., Avlyanov, J. K., & MacDiarmid, A. G. (2001). Complete alignment of polyaniline monolayers on muscovite mica: epitaxial effects of a lattice-matched substrate. Thin Solid Films, 393, 186–192. DOI: 10.1016/s0040-6090(01)01067-7.

    Article  CAS  Google Scholar 

  • Kalbčvan, L., & Dunsch, L. (2009). An in situ Raman spectroelectrochemical study of the controlled doping of semiconducting single walled carbon nanotubes in a conducting polymer matrix. Synthetic Metals, 159, 2245–2248. DOI: 10.1016/j.synthmet.2009.07.059.

    Article  CAS  Google Scholar 

  • Kalendová, A., Vesely, D., Stejskal, J., & Trchová, M. (2008). Anticorrosion efficiency of inorganic coatings depending on the pigment volume concentration of polyaniline phosphate. Progress in Organic Coatings, 63, 209–221. DOI: 10.1016/j.porgcoat.2008.06.001.

    Article  CAS  Google Scholar 

  • Kang, E. T., Neoh, K. G., & Tan, K. L. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23, 277–324. DOI: 10.1016/s0079-6700(97)00030-0.

    Article  CAS  Google Scholar 

  • Karpakam, V., Kamaraj, K., Sathiyanarayanan, S., Venkatachari, G., & Ramu, S. (2011). Electrosynthesis of polyaniline-molybdate coating on steel and its corrosion protection performance. Electrochimica Acta, 56, 2165–2173. DOI: 10.1016/j.electacta.2010.11.099.

    Article  CAS  Google Scholar 

  • Kellenberger, A., Dmitrieva, E., & Dunsch, L. (2011). The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ ATR-FTIR spectroelectrochemical study. Physical Chemistry Chemical Physics, 13, 3411–3420. DOI: 10.1039/c0cp01264e.

    Article  CAS  Google Scholar 

  • Kim, B. R., Lee, H. K., Park, S. H., & Kim H. K. (2011). Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films, 519, 3492–3496. DOI: 10.1016/j.tsf.2011.01.093.

    Article  CAS  Google Scholar 

  • Kocherginsky, N. M., & Wang, Z. (2006). Redox reactions of polyaniline films doped with d,l-camphor sulfonic acid. Reactive & Functional Polymers, 66, 1384–1393. DOI: 10.1016/j.reactfunctpolym.2006.04.002.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovřřovshkoá, M. M., Demicheva, O. V., & Prokeš, J. (2008). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 0.1016/j.jmmm.2007.05.036.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Šeděnková, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006a). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006b). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z.

    Article  CAS  Google Scholar 

  • Křžá, M., & Stejskal, J. (2011). NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 60, 1296–1302. DOI: 10.1002/pi.3079.

    Google Scholar 

  • Křžá, M., Konyushenko, E. N., & Stejskal, J. (2009). NMR Investigation of aniline oligomers produced in the early stages of oxidative polymerization of aniline. Journal of Physical Chemistry B, 113, 6666–6673. DOI: 10.1021/jp9007834.

    Article  CAS  Google Scholar 

  • Kulkarni, S. B., Joshi, S. S., & Lokhande, C. D. (2011). Facile and efficient route for preparation of nanostructured polyaniline thin films: Schematic model for simplest oxidative chemical polymerization. Chemical Engineering Journal, 166, 1179–1185. DOI: 10.1016/j.cej.2010.12.032.

    Article  CAS  Google Scholar 

  • Kuzmany, H., & Sariciftci, N. S. (1987). In situ spectroelectrochemical studies of polyaniline. Synthetic Metals, 18, 353–358. DOI: 10.1016/0379-6779(87)90904-0.

    Article  CAS  Google Scholar 

  • Kuzmin, S. V., Sáha, P., Sudar, N. T., Zakrevskii, V. A., Sapurina, I., Solosin, S., Trchová, M., & Stejskal, J. (2008). Electrical strength of thin polyaniline films. Thin Solid Films, 516, 2181–2187. DOI: 10.1016/j.tsf.2007.07.138.

    Article  CAS  Google Scholar 

  • Langer, J. J., & Golczak, S. (2007). Highly carbonized polyaniline micro- and nanotubes. Polymer Degradation and Stability, 92, 330–334. DOI: 10.1016/j.polymdegradstab.2006.07.018.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z., & Travas-Sejdic, J. (2010). Theories of polyaniline nanostructure self-assembly: Towards and expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 35, 1403–1419. DOI: 10.1016/j.progpolymsci.2010.08.002.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z. D., Zhang, L. J., Bowmaker, G. A., & Travas-Sejdic, J. (2009). Morphological evolution of selfassembled polyaniline nanostructures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a.

    Article  CAS  Google Scholar 

  • Lefrant, S., & Bullot, J. (1993). Optical spectroscopy of conducting polymers: Experimental methods. Materials Science Forum, 122, 25–40. DOI: 10.4028/www.scientific.net/MSF.122.25.

    Article  CAS  Google Scholar 

  • Lei, Z. B., Zhao, M. Y., Dang, L. Q., An, L. Z., Lu, M., Lo, A. Y., Yu, N. Y., & Liu, S. B. (2009). Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 19, 5985–5995. DOI: 10.1039/b908223a.

    Article  CAS  Google Scholar 

  • Lenhart, N., Crowley, K., Killard, A. J., Smyth, M. R., & Morrin, A. (2011). Inkjet printable polyaniline-gold dispersions. Thin Solid Films, 519, 4351–4356. DOI: 10.1016/j.tsf.2011.02.045.

    Article  CAS  Google Scholar 

  • Lepró, X., Terrés, E., Vega-Cantú, Y., RodrÍguez-MacÍas, F. J., Muramatsu, H., Kim, Y. A., Hayashi, T., Endo, M., Torres, M. R., & Terrones, M. (2008). Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chemical Physics Letters, 463, 124–129. DOI: 10.1016/j.cplett.2008.08.001.

    Article  CAS  Google Scholar 

  • Li, W. G., Jia, Q. X., & Wang, H. L. (2006a) Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032.

    Article  CAS  Google Scholar 

  • Li, D., & Kaner, R. B. (2005). Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chemical Communications, 2005, 3286–3288. DOI: 10.1039/b504020e.

    Article  CAS  Google Scholar 

  • Li, L. M., Liu, E. H., Li, J., Yang, Y. J., Shen, H. J., Huang, Z. Z., Xiang, X. X., & Li, W. (2010). A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, 195, 1516–1521. DOI: 10.1016/j.jpowsour.2009.09.016.

    Article  CAS  Google Scholar 

  • Li, J. S., Shen, L. J., Gu, D. W., Yuan, P. F., Cui, X. B., & Yang, N. R. (2006b). Optimum conditions for the preparation of polyaniline films under very high pressure. Reactive & Functional Polymers, 66, 1319–1326. DOI: 10.1016/j.reactfunctpolym.2006.03.014.

    Article  CAS  Google Scholar 

  • Li, G. C., Zhang, C. Q., & Peng, H. R. (2008). Facile synthesis of self-assembled polyaniline nanodisks. Macromolecular Rapid Communications, 29, 63–67. DOI: 10.1002/marc.200700584.

    Article  CAS  Google Scholar 

  • Lindfors, T., & Ivaska, A. (2005) Raman based pH measurements with polyaniline. Journal of Electroanalytical Chemistry, 580, 320–329. DOI: 10.1016/j.jelechem.2005.03.042.

    Article  CAS  Google Scholar 

  • Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Liu, C. J., Hayashi, K., & Toko, K. (2009). A novel formation process of polyaniline micro-/nanofiber network on solid substrates. Synthetic Metals, 159, 1077–1081. DOI: 10.1016/j.synthmet.2009.01.029.

    Article  CAS  Google Scholar 

  • Liu, C. J., Hayashi, K., & Toko, K. (2011). Template-free deposition of polyaniline nanostructures on solid substrates with horizontal orientation. Macromolecules, 44, 2212–2219. DOI: 10.1021/ma1023878.

    Article  CAS  Google Scholar 

  • Liu, P., & Zhang, L. (2009). Hollow nanostructured polyaniline: Preparation, properties and applications. Critical Reviews in Solid State and Materials Science, 34, 75–87. DOI: 10.1080/10408430902875968.

    Article  CAS  Google Scholar 

  • Louarn, G., Lapkowski, M., Quillard, S., Pron, A., Buisson, J. P., & Lefrant, S. (1996). Vibrational properties of polyaniline-isotope effects. Journal of Physical Chemistry, 100, 6998–7006. DOI: 10.1021/jp953387e.

    Article  CAS  Google Scholar 

  • Lu, Y., Ren, Y., Wang, L., Wang, X. D., & Li, C. X. (2009). Template synthesis of conducting polyaniline composites based on honeycomb ordered polycarbonate film. Polymer, 50, 2035–2039. DOI: 10.1016/j.polymer.2009.02.026.

    Article  CAS  Google Scholar 

  • Lu, X. F., Zhang, W. J., Wang, C., Wen, T. C., & Wei, Y. (2011). One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Progress in Polymer Science, 36, 671–712. DOI: 10.1016/j.progpolymsci.2010.07.010.

    Article  CAS  Google Scholar 

  • MacDiarmid, A. G. (1997). Polyaniline and polypyrrole: Where are we headed? Synthetic Metals, 84, 27–34. DOI: 10.1016/s0379-6779(97)80658-3.

    Article  CAS  Google Scholar 

  • MacDiarmid, A. G., Yang, L. S., Huang, W. S., & Humphrey, B. D. (1987). Polyaniline: Electrochemistry and application to rechargeable batteries. Synthetic Metals, 18, 393–398. DOI: 10.1016/0379-6779(87)90911-8.

    Article  CAS  Google Scholar 

  • Mack, N. H., Bailey, J. A., Doorn, S. K., Chen, C. A., Gau, H. M., Xu, P., Williams, D. J., Akhadov, E. A., & Wang, H. L. (2011). Mechanistic study of silver nanoparticles formation on conducting polymer surface. Langmuir, 27, 4979–4984. DOI: 10.1021/la103644j.

    Article  CAS  Google Scholar 

  • Maeda, S., Cairns, D. B., & Armes, S. P. (1997). New reactive polyelectrolyte stabilizers for polyaniline colloids. European Polymer Journal, 33, 245–253. DOI: 10.1016/s0014-3057(96)00164-4.

    Article  CAS  Google Scholar 

  • Maiyalagan, T., Viswanathan, B., & Varadaraju, U. V. (2005). Nitrogen containing carbon nanotubes as supports for Pt — Alternate anodes for fuel cell applications. Electrochemistry Communications, 7, 905–912. DOI: 10.1016/j.elecom.2005.07.007.

    Article  CAS  Google Scholar 

  • Makeiff, D. A., & Huber, T. (2006). Microwave absorption by polyaniline-carbon nanotube composites. Synthetic Metals, 156, 497–505. DOI: 10.1016/j.synthmet.2005.05.019.

    Article  CAS  Google Scholar 

  • Malinauskas, A. (2001). Chemical deposition of conducting polymers. Polymer, 42, 3957–3972. DOI: 10.1016/S0032-3861(00)00800-4.

    Article  CAS  Google Scholar 

  • Matveeva, E. S., Diaz Calleja, R., & Parkhutik, V. (1998). Equivalent circuit analysis of the electrical properties of conducting polymers: Electrical relaxation mechanisms in polyaniline under dry and wet conditions. Journal of Non-Crystalline Solids, 235–237, 772–780. DOI: 10.1016/s0022-3093(98)00628-0.

    Article  Google Scholar 

  • Mascaro, L. H., & Gonçalves, D. (2007). Precipitation and surface polymerizations of aniline at different aniline:oxidizer molar ratios. E-Polymers, no. 071.

  • Mažeikiené, R., & Malinauskas, A. (2000). Deposition of polyaniline on glass and platinum by autocatalytic oxidation of aniline with dichromate. Synthetic Metals, 108, 9–14. DOI: 10.1016/s0379-6779(99)00172-1.

    Article  Google Scholar 

  • Mažeikiené, R., Niaura, G., & Malinauskas, A. (2005). In situ Raman spectroelectrochemical study of electrocatalytic processes at polyaniline modified electrodes: Redox vs. metal-like catalysis. Electrochemistry Communications, 7, 1021–1026. DOI: 10.1016/j.elecom.2005.06.010.

    Article  CAS  Google Scholar 

  • Mažeikiené R., Statino, A., Kuodis, Z., Niaura, G., & Malinauskas, A. (2006). In situ Raman spectroelectrochemical study of self-doped polyaniline degradation kinetics. Electrochemistry Communications, 8, 1082–1086. DOI:10.1016/j.elecom.2006.04.017.

    Article  CAS  Google Scholar 

  • Mazur, M., & Krysinski, P. (2001). Polymer sandwiches: polyaniline films deposited on thiol-coated gold by chemical in situ method. Thin Solid Films, 396, 131–137. DOI:10.1016/s0040-6090(01)01258-5

    Article  CAS  Google Scholar 

  • Mazur, M., Michota-Kaminska, A., & Bukowska, J. (2007). Surface-catalyzed growth of poly(2-methoxyaniline) on gold. Electrochimica Acta, 52, 5669–5676. DOI: 10.1016/j.electacta.2006.10.043.

    Article  CAS  Google Scholar 

  • Menshikova, I. P., Pyshkina, O. A., Levon, K., & Sergeyev, V. G. (2009). Effect of polyaniline particle size on the properties of a polyaniline-nylon 6 composite. Colloid Journal, 71, 233–238. DOI: 10.1134/s1061933x09020124.

    Article  CAS  Google Scholar 

  • Mentus, S., Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2009). Conducting carbonized polyaniline nanotubes. Nanotechnology, 20, 245601. DOI: 10.1088/0957-4484/20/24/245601.

    Article  CAS  Google Scholar 

  • Michel, M., Bour, J., Petersen, J., Arnoult, C., Ettingshausen F., Roth, C., & Ruch, D. (2010). Atmospheric plasma deposition: A new pathway in the design of conducting polymerbased anodes for hydrogen fuel cells. Fuel Cells, 10, 932–937. DOI: 10.1002/fuce.201000050.

    Article  CAS  Google Scholar 

  • Monkman, A. P., & Adams, P. (1991). Structural characterisation of polyaniline free standing films. Synthetic Metals, 41, 891–896. DOI: 10.1016/0379-6779(91)91520-k.

    Article  CAS  Google Scholar 

  • Nasybulin, E., Menshikova, I., Sergeyev, V., & Levon, K. (2009). Preparation of conductive polyaniline/nylon 6 composite films by polymerization of aniline in nylon-6 matrix. Journal of Applied Polymer Science, 114, 1643–1647. DOI:10.1002/app.30771.

    Article  CAS  Google Scholar 

  • Niaura, G., Mažeikiené, R., & Malinauskas, A. (2004). Structural changes in conducting form of polyaniline upon ring sulfonation as deduced by near infrared resonance Raman spectroscopy. Synthetic Metals, 145, 105–112. DOI: 10.1016/j.synthmet.2004.04.010.

    Article  CAS  Google Scholar 

  • Niemann, M. U., Srinivasan, S. S., Phani, A. R., Kumar, A., Goswami, D. Y., & Stefanakos, E. K. (2009). Room temperature reversible hydrogen storage in polyaniline (PANI) nanofibers. Journal of Nanoscience and Nanotechnology, 9, 4561–4565. DOI: 10.1166/jnn.2009.1279.

    Article  CAS  Google Scholar 

  • Pereira da Silva, J. E., Córdoba de Torresi, S. I., de Faria, D. L. A., & Temperini, M. L. A. (1999). Raman characterization of polyaniline induced conformational changes. Synthetic Metals, 101, 834–835. DOI: 10.1016/s0379-6779(98)01300-9.

    Article  CAS  Google Scholar 

  • Pereira da Silva, J. E., Córdoba de Torresi, S. I., & Temperini, M. L. A. (2000a) Redox behavior of crosslinked polyaniline films. Journal of the Brazilian Chemical Society, 11, 91–94. DOI: 10.1590/s0103-50532000000100016.

    Article  Google Scholar 

  • Pereira da Silva, J. E., de Faria, D. L. A, Córdoba de Torresi, S. I., & Temperini, M. L. A. (2000b). Influence of thermal treatment on doped polyaniline studied by resonance Raman spectroscopy. Macromolecules, 33, 3077–3083. DOI:10.1021/ma990801q.

    Article  CAS  Google Scholar 

  • Philip, B. J., Xie, J. N., Abraham, J. K., & Varadan, V. K. (2004). A new synthetic route to enhance polyaniline assembly on carbon nanotubes in tubular composites. Smart Materials and Structures, 13, N105–N108. DOI: 10.1088/0964-1726/13/6/n02.

    Article  CAS  Google Scholar 

  • Ping, Z. (1996). In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92, 3063–3067. DOI: 10.1039/ft9969203063.

    Article  CAS  Google Scholar 

  • Ping, Z., Nauer, G. E., Neugebauer, H., Theiner, J., & Neckel, A. (1997). In situ Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopic investigations on the base-acid transitions of leucoemeraldine. Electrochimica Acta, 42, 1693–1700. DOI: 10.1016/s0013-4686(96)00368-4.

    Article  CAS  Google Scholar 

  • Prasanna, G. D., Jayanna H. S., & Prasad, V. (2011). Preparation, structural, and electrical studies of polyaniline/ZnFe2O4 nanocomposites. Journal of Applied Polymer Science, 120, 2856–2862. DOI: 10.1002/app.33304.

    Article  CAS  Google Scholar 

  • Prokeš, J., Křivka, I., Tobolková, E., & Stejskal, J. (2000). Enhanced stability of polyaniline/inorganic salt composites during temperature cycling. Polymer Degradation and Stability, 68, 261–269. DOI: 10.1016/s0141-3910(00)00009-4.

    Article  Google Scholar 

  • Prokeš, J., & Stejskal, J. (2004). Polyaniline prepared in the presence of various acids: 2. Thermal stability of conductivity. Polymer Degradation and Stability, 86, 187–195. DOI: 10.1016/j.polymdegradstab.2004.04.012.

    Article  CAS  Google Scholar 

  • Quadrat, O., & Stejskal, J. (2006). Polyaniline in electrorheology. Journal of Industrial and Engineering Chemistry, 12, 352–361.

    CAS  Google Scholar 

  • Quillard, S., Louarn, G., Berrada, K., Lefrant, S., Coplin, K. A., Jessen, S. W., & Epstein, A. J. (1995). Resonance Raman scattering and photoinduced infrared absorption in different forms of polyanilines and substituted polyanilines. Molecular Crystals and Liquid Crystals, Science and Technology Section B: Nonlinear Optics, 10, 253–262.

    CAS  Google Scholar 

  • Quillard, S., Louarn, G., Buisson, J. P., Boyer, M., Lapkowski, M., Pron, A., & Lefrant, S. (1997). Vibrational spectroscopic studies of the isotope effects in polyaniline. Synthetic Metals, 84, 805–806. DOI: 10.1016/s0379-6779(96)04155-0.

    Article  CAS  Google Scholar 

  • Quillard, S., Louarn, G., Lefrant, S., & MacDiarmid, A. G. (1994) Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Physical Review B, 50, 12496–12508. DOI: 10.1103/PhysRevB.50.12496.

    Article  Google Scholar 

  • Rannou, P., & Nechtschein, M. (1997). Aging studies on polyaniline: conductivity and thermal stability. Synthetic Metals, 84, 755–756. DOI: 10.1016/s0379-6779(96)04131-8.

    Article  CAS  Google Scholar 

  • Riede, A., Helmstedt, M., Riede, V., Zemek, J., & Stejskal, J. (2000). In situ polymerized polyaniline films. 2. Dispersion polymerization of aniline in the presence of colloidal silica. Langmuir, 16, 6240–6244. DOI: 10.1021/la991414c.

    Article  CAS  Google Scholar 

  • Riede, A., Helmstedt, M., Sapurina, I., & Stejskal, J. (2002). In situ polymerized polyaniline films: 4. Film formation in dispersion polymerization of aniline. Journal of Colloid and Interface Science, 248, 413–418. DOI: 10.1006/jcis.2001.8197.

    Article  CAS  Google Scholar 

  • Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011a). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034.

    Article  CAS  Google Scholar 

  • RozlÍvková, Z., Trchová, M., Šeděnková, I., Špírková, M., & Stejskal, J. (2011b). Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. Thin Solid Films, 519, 5933–5941. DOI: 10.1016/j.tsf.2011.03.025.

    Article  CAS  Google Scholar 

  • Saini, P., Choudhary, V., Singh, B. P., Mathur, R. B., & Dhawan, S. K. (2009). Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Materials Chemistry and Physics, 113, 919–926. DOI: 10.1016/j.matchemphys.2008.08.065.

    Article  CAS  Google Scholar 

  • Sajanlal, P. R., Sreeprasad, T. S., Nair, A. S., & Pradeep, T. (2008). Wires, plates, flowers, needles, and core-shells: Diverse nanostructures of gold using polyaniline templates. Langmuir, 24, 4607–4614. DOI: 10.1021/la703593c.

    Article  CAS  Google Scholar 

  • Salvatierra, R. V., Oliveira, M. M., & Zarbin, A. J. G. (2010). One-pot synthesis and processing of transparent, conducting, and free-standing carbon nanotubes/polyaniline composite films. Chemistry of Materials, 22, 5222–5234. DOI: 10.1021/cm1012153.

    Article  CAS  Google Scholar 

  • Sapurina, I. Yu., Kompan, M. E., Malyshkin, V. V., Rosanova, V. V., & Stejskal, J. (2009). Properties of proton-conducting Nafion-type membranes with nanometer-thick polyaniline surface layers. Russian Journal of Electrochemistry, 45, 697–706. DOI: 10.1134/s1023193509060123.

    Article  CAS  Google Scholar 

  • Sapurina, I. Yu., Kompan, M. E., Zabrodskii, A. G., Stejskal, J., & Trchová, M. (2007) Nanocomposites with a mixed electronic and protonic conduction for electrocatalysis. Russian Journal of Electrochemistry, 43, 528–536. DOI: 10.1134/s1023193507050059.

    Article  CAS  Google Scholar 

  • Sapurina, I., Osadchev, A. Yu., Volchek, B. Z., Trchová, M., Riede, A., & Stejskal, J. (2002). In-situ polymerized polyaniline films 5. Brush-like chain ordering. Synthetic Metals, 129, 29–37. DOI: 10.1016/s0379-6779(02)00036-x.

    Article  CAS  Google Scholar 

  • Sapurina, I., Riede, A., & Stejskal, J. (2001). In-situ polymerized polyaniline films 3. Film formation. Synthetic Metals, 123, 503–507. DOI: 10.1016/s0379-6779(01)00349-6.

    Article  CAS  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1001/pi.2476.

    Article  CAS  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.2478/s11696-009-0061-3.

    Article  CAS  Google Scholar 

  • Sapurina, I. Yu., & Stejskal, J. (2011). The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russian Chemical Reviews, 79, 1123–1143. DOI: 10.1070/rc2010v079n12abeh004140.

    Article  CAS  Google Scholar 

  • Schnippering, M., Powell, H. V., Mackenzie, S. R., & Unwin, P. R. (2009). Real-time monitoring of polyaniline nanoparticle formation on surfaces. Journal of Physical Chemistry C, 113, 20221–20227. DOI: 10.1021/jp906771c.

    Article  CAS  Google Scholar 

  • Šeděnková, I., Prokeš, J., Trchová, M., & Stejskal, J. (2008a). Conformational transition in polyaniline films — Spectroscopic and conductivity studies of ageing. Polymer Degradation and Stability, 93, 428–435. DOI: 10.1016/j.polymdegradstab.2007.11.015.

    Article  CAS  Google Scholar 

  • Šeděnková, I., Trchová, M., Blinova, N. V., & Stejskal, J. (2006). In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 515, 1640–1646. DOI: 10.1016/j.tsf.2006.05.038.

    Article  CAS  Google Scholar 

  • Šeděnková, I., Trchová, M., & Stejskal, J. (2008b). Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water — FTIR and Raman spectroscopic studies. Polymer Degradation and Stability, 93, 2147–2157. DOI: 10.1016/j.polymdegradstab.2008.08.007.

    Article  CAS  Google Scholar 

  • Šeděnková, I., Trchová, M., Stejskal, J., & Bok, J. (2007). Polymerization of aniline in the solutions of strong and weak acids: the evolution of infrared spectra and their interpretation using factor analysis. Applied Spectroscopy, 61, 1153–1162. DOI: 10.1366/000370207782597058.

    Article  Google Scholar 

  • Šeděnková, I., Trchová, M., Stejskal, J., & Prokeš, J. (2009). Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. ACS Applied Materials & Interfaces, 1, 1906–1912. DOI: 10.1021/am900320t.

    Article  CAS  Google Scholar 

  • Shao, Y. Y., Sui, J. H., Yin, G. P., & Gao, Y. Z. (2008). Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 79, 89–99. DOI: 10.1016/j.apcatb.2007.09.047.

    Article  CAS  Google Scholar 

  • Shenashen, M. A., Ayad, M. M., Salahuddin, N., & Youssif, M. A. (2010). Usage of quartz crystal microbalance technique to study the polyaniline films formation in the presence of pphenylenediamine. Reactive & Functional Polymers, 70, 843–848. DOI: 10.1016/j.reactfunctpolym.2010.07.005.

    Article  CAS  Google Scholar 

  • Shishkanova, T. V., Matějka, P., Král, V., Šeděnková, I., Trchová, M., & Stejskal, J. (2008). Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve potentiometric response. Analytica Chimica Acta, 624, 238–246. DOI: 10.1016/j.aca.2008.07.001.

    Article  CAS  Google Scholar 

  • Shishkanova, T. V., Sapurina, I., Stejskal, J., Král, V., & Volf, R. (2005). Ion-selective electrodes: polyaniline modification and anion recognition. Analytica Chimica Acta, 553, 160–168. DOI: 10.1016/j.aca.2005.08.018.

    Article  CAS  Google Scholar 

  • Soto-Oviedo, M. A., Araújo, O. A., Faez, R., Rezende, M. C., & De Paoli, M. A. (2006). Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synthetic Metals, 156, 1249–1255. DOI: 10.1016/j.synthmet.2006.09.003.

    Article  CAS  Google Scholar 

  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies. New York, NY, USA: Wiley.

    Google Scholar 

  • Srivastava, S., Kumar, S., Singh, V. N., Singh, M., & Vijay, Y. K. (2011). Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing. International Journal of Hydrogen Energy, 36, 6343–6355. DOI: 10.1016/j.ijhydene.2011.01.141.

    Article  CAS  Google Scholar 

  • Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258.

    CAS  Google Scholar 

  • Stejskal, J. (2002). Conducting polymer nanospheres and nanocomposites. In R. Arshady, & A. Guyot (Eds.), Dendrimers, assemblies, nanocomposites (MML Series, Vol. 5, pp. 195–281). London, UK: Citus Books.

    Google Scholar 

  • Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnková, I., Prokeš, J., & Sapurina, I. (2009a). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: Beyond 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857.

  • Stejskal, J., Hlavatá, D., Holler, P., Trchová, M., Prokeš, J., & Sapurina, I. (2004). Polyaniline prepared in the presence of various acids: a conductivity study. Polymer International, 53, 294–300. DOI: 10.1002/pi.1406.

    Article  CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1995). Polyaniline forms and formation. Collection of Czechoslovak Chemical Communications, 60, 1747–1755. DOI: 10.1135/cccc19951747.

    Article  CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-x.

    Article  CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Polyaniline dispersions 2. UV-Vis absorption spectra. Synthetic Metals, 61, 225–231. DOI: 10.1016/0379-6779(93)91266-5.

    CAS  Google Scholar 

  • Stejskal, J., Prokeš, J., & Sapurina, I. (2009b). The reduction of silver ions with polyaniline: The effect of the type of polyaniline and the mole ratio of the reagents. Materials Letters, 63, 709–711. DOI: 10.1016/j.matlet.2008.12.026.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Sapurina, I. (2004). On the origin of colloidal particles in the dispersion polymerization of aniline. Journal of Colloid and Interface Science, 274, 489–495. DOI: 10.1016/j.jcis.2004.02.053.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report). Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577050815.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Sapurina, I. (2008). Polyaniline — A conducting polymer. In U. Schubert, N. Hüsing, & R. Laine (Eds.), Materials syntheses: A practical guide (pp 199–207). Vienna, Austria: Springer.

    Chapter  Google Scholar 

  • Stejskal, J., Sapurina, I., Prokeš, J., & Zemek, J. (1999a). In-situ polymerized polyaniline films. Synthetic Metals, 105, 195–202. DOI: 10.1016/s0379-6779(99)00105-8.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010a). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008a). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006a). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007.

    Article  CAS  Google Scholar 

  • Stejskal, J., Špírkov P., & Prokeš, J. (1999b). Polyaniline dispersions 8. The control of particle morphology. Polymer, 40, 2487–2492. DOI: 10.1016/s0032-3861(98)00478-9.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Brodinová, J., Kalenda, P., Fedorova, S. V., Prokeš, J., & Zemek, J. (2006b). Coating of zinc ferrite particles with a conducting polymer, polyaniline. Journal of Colloid and Interface Science, 298, 87–93. DOI: 10.1016/j.jcis.2005.12.034.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Brodinová, J., & Sapurina, I. (2007). Flame retardancy afforded by polyaniline deposited on wood. Journal of Applied Polymer Science, 103, 24–30. DOI: 10.1002/app.23873.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Brožová, L., & Prokeš, J. (2009c). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Fedorova, S., Sapurina, I., & Zemek, J. (2003). Surface polymerization of aniline on silica gel. Langmuir, 19, 3013–3018. DOI: 10.1021/la026672f.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Hromádková, J., Kovřřová, J., & Kalendová, A. (2010b). The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polymer International, 59, 875–878. DOI: 10.1002/pi.2858.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Kovřřová, J., Brožová, L., & Prokeš, J. (2009d). The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites. Reactive & Functional Polymers, 69, 86–90. DOI: 10.1016/j.reactfunctpolym.2008.11.004.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Kovřřová, J., Prokeš, J., & Omastová, M. (2008b). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., & Sapurina, I. (2005). Flameretardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 98, 2347–2354. DOI: 10.1002/app.22144.

    Article  CAS  Google Scholar 

  • Strong, V., Wang, Y., Patatanyan, A., Whitten, P. G., Spinks, G. M., Wallace, G. G., & Kaner, R. B. (2011). Direct submicrometer patterning of nanostructured conducting polymer films via a low-energy infrared laser. Nano Letters, 11, 3128–3135. DOI: 10.1021/nl2011593.

    Article  CAS  Google Scholar 

  • Sun, L. J., Liu, X. X., Lau, K. K. T., Chen, L., & Gu, W. M. (2008). Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor. Electrochimica Acta, 53, 3036–3042. DOI: 10.1016/j.electacta.2007.11.034.

    Article  CAS  Google Scholar 

  • Surwade, S. P., Agnihotra, S. R., Dua, V., Manohar, N., Jain, S., Ammu, S., & Manohar, S. K. (2009a). Catalyst-free synthesis of oligoanilines and polyaniline nanofibers using H2O2. Journal of the American Chemical Society, 131, 12528–12529. DOI: 10.1021/ja905014e.

    Article  CAS  Google Scholar 

  • Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferrari, J. P. (2009b). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI: 10.1016/j.synthmet.2008.11.002.

    Article  CAS  Google Scholar 

  • Surwade, S. P., Manohar, N., & Manohar, S. K. (2009c). Origin of bulk nanoscale morphology in conducting polymers. Macromolecules, 42, 1792–1795. DOI: 10.1021/ma900141g.

    Article  CAS  Google Scholar 

  • Sutar, D. S., Padma, N., Aswal, D. K., Deshpande, S. K., Gupta, S. K., & Yakhmi, J. V. (2007). Growth of highly oriented crystalline polyaniline films by self-organization. Journal of Colloid and Interface Science, 313, 353–358. DOI:10.1016/j.jcis.2007.04.051.

    Article  CAS  Google Scholar 

  • Sutar, D. S., Tewari, R., Dey, G. K., Gupta, S. K., & Yakhmi, J. V. (2009). Morphology and structure of highly crystalline polyaniline films. Synthetic Metals, 159, 1067–1071. DOI: 10.1016/j.synthmet.2009.01.030.

    Article  CAS  Google Scholar 

  • Tagowska, M., Pałys, B., & Jackowska, K. (2004). Polyaniline nanotubules—anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synthetic Metals, 142, 223–229. DOI: 10.1016/j.synthmet.2003.09.001.

    Article  CAS  Google Scholar 

  • Tai, Q. D., Chen, B. L., Guo, F., Xu, S., Hu, H., Sebo, B., & Zhao, X. Z. (2011). In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano, 5, 3795–3799. DOI: 10.1021/nn200133g.

    Article  CAS  Google Scholar 

  • Tan, F. R., Qu, S. C., Wu, J., Wang, Z. J., Jin, L., Bi, Y., Cao, J., Liu, K., Zhang, J. M., & Wang, Z. G. (2011). Electrodeposited polyaniline films decorated with nano-islands: Characterization and application as anode buffer layers in solar cells. Solar Energy Materials and Solar Cells, 95, 440–445. DOI: 10.1016/j.solmat.2010.08.028.

    Article  CAS  Google Scholar 

  • Tang, J. S., Jing, X. B., Wang, B. C., & Wang, F. S. (1988). Infrared spectra of soluble polyaniline. Synthetic Metals, 24, 231–238. DOI: 10.1016/0379-6779(88)90261-5.

    Article  CAS  Google Scholar 

  • Tao, X. Y., Wang, X., Wie, Q., & Wu, Q. Y. (2007). Rapid formation of nanosized polyaniline membranes on surface modified glass substrates. Journal of Macromolecular Science A: Pure and Applied Chemistry, 44, 351–354. DOI: 10.1080/10601320601077575.

    Article  CAS  Google Scholar 

  • Tian, Z. Q. (2005). Surface-enhanced Raman spectroscopy: advancements and applications. Journal of Raman Spectroscopy, 36, 466–470. DOI: 10.1002/jrs.1378.

    Article  CAS  Google Scholar 

  • Tockary, T. A., Asijati, W. E., & Soebianto, Y. S. (2008). Model of in situ polyaniline film coating on mylar: Influence of aniline polymerization parameters. Journal of Applied Sciences, 8, 2041–2049. DOI: 10.3923/jas.2008.2041.2049.

    Article  CAS  Google Scholar 

  • Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a.

    Article  CAS  Google Scholar 

  • Tran, H. D., Li, D., & Kaner, R. B. (2009). One-dimensional conducting polymer nanostructures: Bulk synthesis and applications. Advanced Materials, 21, 1487–1499. DOI: 10.1002/adma.200802289.

    Article  CAS  Google Scholar 

  • Travain, S. A., de Souza, N. C., Balogh, D. T., & Giacometti, J. A. (2007). Study of the growth process of in situ polyaniline deposited films. Journal of Colloid and Interface Science, 316, 292–297. DOI: 10.1016/j.jcis.2007.08.024.

    Article  CAS  Google Scholar 

  • Travers, J. P., Sixou, B., Berner, D., Wolter, A., Rannou, P., Beau, B., Pépin-Donat, B., Barthet, C., Guglielmi, M., Mermilliod, N., Gilles, B., Djurado, D., Attias, A. J., & Vautrin, M. (1999). Is granularity the determining feature for electron transport in conducting polymers? Synthetic Metals, 101, 359–362. DOI: 10.1016/s0379-6779(98)00354-3.

    Article  CAS  Google Scholar 

  • Trchová, M., Konyushenko, E. N., Stejskal, J., Kovřřová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-wall carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001.

    Article  CAS  Google Scholar 

  • Trchová, M., Matějka, P., Brodinová, J., Kalendová, A., Prokeš, J., & Stejskal, J. (2006a). Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 91, 114–121. DOI: 10.1016/j.polymdegradstab.2005.04.022.

    Article  CAS  Google Scholar 

  • Trchová, M., Sapurina, I., Prokeš, J., & Stejskal, J. (2003). FTIR spectroscopy of ordered polyaniline films. Synthetic Metals, 135, 305–306. DOI: 10.1016/s0379-6779(02)00570-2.

    Article  CAS  Google Scholar 

  • Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović G. (2006b). Evolution of polyaniline nanotubes: The oxidation of aniline in water. Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g.

    Article  CAS  Google Scholar 

  • Trchová, M., Šeděnková, I., & Stejskal, J. (2005). In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerization. Synthetic Metals, 154, 1–4. DOI: 10.1016/j.synthmet.2005.07.001.

    Article  CAS  Google Scholar 

  • Trchová, M., Šeděnková, I., Tobolková, E., & Stejskal, J. (2004). FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polymer Degradation and Stability, 86, 179–185. DOI: 10.1016/j.polymdegradstab.2004.04.011.

    Article  CAS  Google Scholar 

  • Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry, 83, 1803–1817. DOI: 10.1351/pac-rep-10-02-01.

    Article  CAS  Google Scholar 

  • Trivedi, D. C. (1997). Polyanilines. In H. S. Nalwa (Ed.), Handbook of organic conductive molecules and polymers (Vol. 2, pp. 505–572). Chichester, UK: Wiley.

    Google Scholar 

  • Trivedi, D. C., & Dhawan, S. K. (1993). Shielding of electromagnetic interference using polyaniline. Synthetic Metals, 59, 267–272. DOI: 10.1016/0379-6779(93)91036-2.

    Article  CAS  Google Scholar 

  • Tseng, R. J., Baker, C. O., Shedd, B., Huang, J. X., Kaner R. B., Ouyang, J. Y., & Yang, Y. (2007). Charge transfer effect in the polyaniline-gold nanoparticle memory system. Applied Physics Letters, 90(5), 053101. DOI: 10.1063/1.2434167.

    Article  CAS  Google Scholar 

  • Venancio, E. C., Wang, P. C., & MacDiarmid, A. G. (2006). The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synthetic Metals, 156, 357–369. DOI: 10.1016/j.synthmet.2005.08.035.

    Article  CAS  Google Scholar 

  • Venancio, E. C., Wang, P. C., Toledo, O. Y., & MacDiarmid, A. G. (2007). First preparation of optical quality films of nano/micro hollow spheres of polymers of aniline. Synthetic Metals, 157, 758–763. DOI: 10.1016/j.synthmet.2007.08.006.

    Article  CAS  Google Scholar 

  • Wallace, G. G., Spinks, G. M., Kane-Maguire, L. A. P., & Teasdale, P. R. (2003). Conductive electroactive polymers: Intelligent materials systems (2nd ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Wan, M. X. (2009). Some issues related to polyaniline micro-/nanostructures. Macromolecular Rapid Communication, 30, 963–975. DOI: 10.1002/marc.200800817.

    Article  CAS  Google Scholar 

  • Wang, C. H., Chen, C. C., Hsu, H. C., Du, H. Y., Chen, C. P., Hwang, J. Y., Chen, L. C., Shih, H. C., Stejskal, J., & Chen, K. H. (2009). Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells. Journal of Power Sources, 190, 279–284. DOI:10.1016/j.powsour.2008.12.125.

    Article  CAS  Google Scholar 

  • Wang, P. C., Huang, Z., & MacDiarmid, A. G. (1999). Critical dependency of conductivity of polypyrrole and polyaniline films on the hydrophobicity/hydrophilicity of the substrate surface. Synthetic Metals, 101, 852–853. DOI: 10.1016/s0379-6779(98)01329-0.

    Article  CAS  Google Scholar 

  • Wang, H. L., MacDiarmid, A. G., Wang, Y. Z., Gebier, D. D., & Epstein, A. J. (1996). Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices. Synthetic Metals, 78, 33–37. DOI: 10.1016/0379-6779(95)03569-6.

    Article  CAS  Google Scholar 

  • Washburn, E. W. (Ed.) (1929). International critical tables of numerical data: Physics, chemistry and technology (Vol. 6, pp. 241). London, UK: McGraw-Hill.

    Google Scholar 

  • Wei, Z. X., Wan, M. X., Lin, T., & Dai, L. M. (2003). Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Advanced Materials, 15, 136–139. DOI: 10.1002/adma.200390027.

    Article  CAS  Google Scholar 

  • Willner, I., Willner, B., & Katz, E. (2007). Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry, 70, 2–11. DOI: 10.1016/j.bioelechem.2006.03.013.

    Article  CAS  Google Scholar 

  • Wu, C. G., Hsiao, H. T., & Yeh, Y. R. (2001a). Electroless surface polymerization of polyaniline films on aniline primed ITO electrodes: a simple method to fabricate good modified anodes for polymeric light emitting diodes. Journal of Materials Chemistry, 11, 2287–2292. DOI: 10.1039/b102084f.

    Article  CAS  Google Scholar 

  • Wu, G., Li, L., Li, J. H., & Xu, B. Q. (2005a). Polyanilinecarbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon, 43, 2579–2587. DOI: 10.1016/j.carbon.2005.05.011.

    Article  CAS  Google Scholar 

  • Wu, T. M., Lin, Y. W., & Liao, C. S. (2005b). Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon, 43, 734–740. DOI: 10.1016/j.carbon.2004.10.043

    Article  CAS  Google Scholar 

  • Wu, G., More, K. L., Johnston, C. M., & Zelenay, P. (2011). High-performance electrocatalysts for the oxygen reduction derived from polyaniline, iron, and cobalt. Science, 332, 443–447. DOI: 10.1126/science.1200832.

    Article  CAS  Google Scholar 

  • Wu, G., Swaidan, R., Li, D. Y., & Li, N. (2008). Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochimica Acta, 53, 7622–7629. DOI: 10.1016/j.electacta.2008.03.082.

    Article  CAS  Google Scholar 

  • Wu, A. M., Venancio, E. C., & MacDiarmid, A. G. (2007). Polyaniline and polypyrrole oxygen reversible electrodes. Synthetic Metals, 157, 303–310. DOI: 10.1016/synthmet.2007.03.008.

    Article  CAS  Google Scholar 

  • Wu, C. G., Yeh, Y. R., Chen, J. Y., & Chiou, Y. H. (2001b). Electroless surface polymerization of ordered conducting polyaniline films on aniline-primed substrates. Polymer, 42, 2877–2885. DOI: 10.1016/s0032-3861(00)00582-6.

    Article  CAS  Google Scholar 

  • Yang, M. M., Cheng, B., Song, H. H., & Chen, X. H. (2010). Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochimica Acta, 55, 7021–7027. DOI: 10.1016/j.electacta.2010.06.077.

    Article  CAS  Google Scholar 

  • Yeh, Y. R., Hsiao, H. T., & Wu, C. G. (2001). The application of in-situ prepared polyaniline film as a hole blocking layer in polymeric organic light emitting diode. Synthetic Metals, 121, 1651–1652. DOI: 10.1016/s0379-6779(00)00878-x.

    Article  CAS  Google Scholar 

  • Yin, J. B, Xia, X., Xiang, L. Q., & Zhao, X. P. (2010). Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon, 48, 2958–2967. DOI:10.1016/j.carbon.2010.04.035.

    Article  CAS  Google Scholar 

  • Zeng, X. R., & Ko, T. M. (1998). Structures and properties of chemically reduced polyanilines. Polymer, 39, 1187–1195. DOI: 10.1016/s0032-3861(97)00381-9.

    Article  CAS  Google Scholar 

  • Zhang, W., Cheng, Y. M., Yin, X., & Liu, B. (2011a). Solidstate dye-sensitized solar cells with conjugated polymers as hole-transpoting materials. Macromolecular Chemistry and Physics, 212, 15–23. DOI: 10.1002/macp.201000489.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Goux, W. J., & Manohar, S. K. (2004). Synthesis of polyaniline nanofibers by “nanofiber seeding”. Journal of the American Chemical Society, 126, 4502–4503. DOI:10.1021/ja031867a.

    Article  CAS  Google Scholar 

  • Zhang, Y., Jiang, X. Q., Zhang, R. R., Sun, P. P., & Zhou, Y. M. (2011b). Influence of the nanostructure on charge transport in polyaniline films. Electrochimica Acta, 56, 3264–3269. DOI: 10.1016/j.electacta.2011.01.032.

    Article  CAS  Google Scholar 

  • Zhang, J. X., Liu, C., & Shi, G. Q. (2005). Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes. Journal of Applied Polymer Science, 96, 732–739. DOI: 10.1002/app.21520.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Peng, H., Zujovic, Z. D., Kilmartin, P. A., & Travas-Sejdic, J. (2007). Characterization of polyaniline nanotubes formed in the presence of amino acids. Macromolecular Chemistry and Physics, 208, 1210–1217. DOI: 10.1002/macp.200700013.

    Article  CAS  Google Scholar 

  • Zhang, L. J., & Wan, M. X. (2003). Self-assembly of polyaniline: From nanotubes to hollow microspheres. Advanced Functional Materials, 13, 815–820. DOI: 10.1002/adfm.200304458.

    Article  CAS  Google Scholar 

  • Zhang, D. H., & Wang, Y. Y. (2006). Synthesis and applications of one-dimensional nano-structured polyaniline. Material Science and Engineering B, 134, 9–19. DOI: 10.1016/j.mseb.2006.07.037.

    Article  CAS  Google Scholar 

  • Zhang, Z. M., Wang, L. Q., Deng, J. Y., & Wan, M. X. (2008a). Self-assembled nanostructures of polyaniline doped with poly(3-thiophenacetic acid). Reactive & Functional Polymers, 68, 1081–1087. DOI: 10.1016/j.reactfunctpolym.2008.02.010.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Wang, J. X., Wang, Z., Zhang, F. B., & Wang, S. C. (2009). Electrodeposition of polyaniline nanostructures: A lamellar structure. Synthetic Metals, 159, 277–281. DOI: 10.1016/j.synthmet.2008.09.015.

    Article  CAS  Google Scholar 

  • Zhang, L. X., Zhang, L. J., & Wan, M. X. (2008b). Molybdic acid doped polyaniline micro/nanostructures via a selfassembly process. European Polymer Journal, 44, 2040–2045. DOI: 10.1016/j.eurpolymj.2008.04.046.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Zujovic, Z. D., Peng, H., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008c). Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules, 41, 8877–8884. DOI: 10.1021/ma801728j.

    Article  CAS  Google Scholar 

  • Zhao, W. J., Ma, L., & Lu, K. (2007a). Facile synthesis of polyaniline nanofibers in the presence of polyethylene glycol. Journal of Polymer Research, 14, 1–4. DOI: 10.1007/s10965-006-9069-3.

    Article  CAS  Google Scholar 

  • Zhao, C., Xing, S. X., Yu, Y. H., Zhang, W. J., & Wang, C. (2007b). A novel all-plastic diode based upon pure polyaniline material. Microelectronics Journal, 38, 316–320. DOI: 10.1016/j.mejo.2007.01.004.

    Article  CAS  Google Scholar 

  • Zheng, W., Angelopoulos, M., Epstein, A. J., & MacDiarmid, A. G. (1997). Experimental evidence for hydrogen bonding in polyaniline: Mechanism of aggregate formation and dependency on oxidation state. Macromolecules, 30, 2953–2955. DOI: 10.1021/ma9700136.

    Article  CAS  Google Scholar 

  • Zhong, W. B., Wang, Y. X., Yan, Y., Sun, Y. F., Deng, J. P., & Yang, W. T. (2007). Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: Obtaining spherical particles, wires, and ribbons. Journal of Physical Chemistry B, 111, 3918–3926. DOI: 10.1021/jp0678296.

    Article  CAS  Google Scholar 

  • Zhou, Y. K., He, B. L., Zhou, W. J., & Li, H. L. (2004). Preparation and electrochemistry of SWNT/PANI composite films for electrochemical capacitors. Journal of the Electrochemical Society, 151, A1052–A1057. DOI: 10.1149/1.1758812.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011). Lamellarstructured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Zhang, L. J., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008). Self-assembled, nanostructured aniline oxidation products: A structural investigation. Macromolecules, 41, 3125–3135. DOI: 10.1021/ma071650r.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslava Trchová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trchová, M., Morávková, Z., Šeděnková, I. et al. Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chem. Pap. 66, 415–445 (2012). https://doi.org/10.2478/s11696-012-0142-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0142-6

Keywords

Navigation