Skip to main content
Log in

Electrodeposition of hafnium and hafnium-based coatings in molten salts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

At present, coatings are mostly produced by CVD, PVD methods, plasma, and detonation spraying. Molten salts for coatings deposition are also becoming highly attractive. They provide wide possibilities for coating production of hafnium by electrodeposition, electrochemical synthesis, and precise surface alloying. Consideration is given to all these methods. The production of heat-resistant coatings from hafnium and niobium-hafnium alloys, and the electrochemical syntheses of copperhafnium solder and HfB2 coatings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreev, Y. Y. (1979). Kinetics of alloy formation on the solid cathode during electrodeposition of metal from molten salt electrolyte. Russian Journal of Electrochemistry, 15, 49–54. (in Russian)

    CAS  Google Scholar 

  • Baraboshkin, A. N. (1976). Electrocrystallization of metals from molten salts. Moscow, Russia: Nauka. (in Russian)

    Google Scholar 

  • Bukatova, G. A., Kuznetsov, S. A., & Gaune-Escard, M. (2003). The electrochemical synthesis of europium boride. Journal of Mining and Metallurgy, 39B, 251–259.

    Article  Google Scholar 

  • Fuller, J. (2002). New directions for the air force ceramics basic research program. In The 1st ECHEM Workshop on Electrosynthesis of High Temperature Materials from Non-Aqueous Media & Related Topics, September 9–10, 2002 (pp. 5–32). Wiener Neustadt, Austria.

  • Glagolevskaya, A. L., Kuznetsova, S. V., & Kuznetsov, S. A. (1989). Corrosion of hafnium in chloride and mixed chloridefluoride melts. Russian Journal of Applied Chemistry, 62, 2478–2481.

    Google Scholar 

  • Kaptay, G., & Kuznetsov, S. A. (1999). Electrochemical synthesis of refractory borides from molten salts. Plasmas & Ions, 2, 45–56. DOI: 10.1016/s1288-3255(00)87686-8.

    Article  CAS  Google Scholar 

  • Kuznetsov, S. A. (1993). Electroreduction of refractory-metal complexes in salt melts: specific features and relationships. Russian Journal of Electrochemistry, 29, 1323–1329.

    Google Scholar 

  • Kuznetsov, S. A. (1996a). The effect of the second coordination sphere on electroreduction of hafnium and rhenium complexes in salt melts. Russian Journal of Electrochemistry, 32, 1310–1316.

    Google Scholar 

  • Kuznetsov, S. A. (1996b). Electroreduction of boron in chloridefluoride melts. Russian Journal of Electrochemistry, 32, 763–769.

    CAS  Google Scholar 

  • Kuznetsov, S. A. (2002). Electrochemical techniques. Some aspects of electrochemical behaviour of refractory metal complexes. In M. Gaune-Escard (Ed.), Molten salts: From fundamental to applications (NATO Science Series: II. Mathematics, Physics and Chemistry, Vol. 52, Chapter 66, pp. 283–303). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Kuznetsov, S. A. (2003). Surface coating for functional materials creation in ionic melts. In Proceedings of the International Symposium on Ionic Liquids in Honour of Marcelle Gaune-Escard, 26–28 June, 2003 (pp. 199–209). Carry le Rouet, France: The Norwegian University of Science and Technology.

    Google Scholar 

  • Kuznetsov, S. A. (2009). Electrochemistry of refractory metals in molten salts: Application for the creation of new and functional materials. Pure and Applied Chemistry, 81, 1423–1439. DOI: 10.1351/pac-con-08-08-09.

    Article  CAS  Google Scholar 

  • Kuznetsov, S. A., & Gaune-Escard, M. (2002). Influence of second coordination sphere on the kinetics of electrode reactions in molten salts. Zeitschrift für Naturforschung A, 57a, 85–88.

    Google Scholar 

  • Kuznetsov, S. A., & Gaune-Escard, M. (2006). Kinetics of electrode processes and thermodynamic properties of europium chlorides dissolved in alkali chloride melts. Journal of Electroanalytical Chemistry, 595, 11–22. DOI: 10.1016/j. jelechem.2006.02.036.

    Article  CAS  Google Scholar 

  • Kuznetsov, S. A., Kazakova, O. S., & Makarova, O. V. (2009). Electrochemical behaviour and electrorefining of cobalt in NaCl-KCl-K2TiF6 melt. Zeitschrift für Naturforschung A, 64a, 485–491.

    Google Scholar 

  • Kuznetsov, S. A., & Kuznetsova, S. V. (2007). Electrochemical synthesis of niobium-hafnium coatings in molten salts. Zeitschrift für Naturforschung A, 62a, 425–430.

    Google Scholar 

  • Kuznetsov, S. A., Kuznetsova, S. V., Polyakov, E. G., & Stangrit, P. T. (1990a). Alloy formation studies during hafnium electrodeposition on a copper cathode in molten salts. Russian Journal Electrochemistry, 26, 815–818.

    CAS  Google Scholar 

  • Kuznetsov, S. A., Kuznetsova, S. V., & Stangrit, P. T. (1990b). Cathodic reduction of HfCl4 in an equimolar NaCl-KCl melt. Russian Journal of Electrochemistry, 26, 55–60.

    Google Scholar 

  • Kuznetsova, S. V., Glagolevskaya A. L., & Kuznetsov, S. A. (1989). Effect of electrolysis parameters and the anionic composition of the electrolyte on the roughness of the hafnium coatings. Russian Journal of Applied Chemistry, 62, 488–490.

    Google Scholar 

  • Kuznetsova, S. V., Glagolevskaya, A. L., & Kuznetsov, S. A. (1990a). Alloy formation in electrodeposition of hafnium from a melt on steel and graphite supports. Russian Journal of Applied Chemistry, 63, 2374–2377.

    CAS  Google Scholar 

  • Kuznetsova, S. V., Glagolevskaya, A. L., & Kuznetsov, S. A. (1992). Electrodeposition of hafnium coatings from molten NaCl-KCl-HfCl4 mixture using direct and reverse currents. Rasplavy, 6, 77–82. (in Russian)

    Google Scholar 

  • Kuznetsova, S. V., Kuznetsov, S. A., & Stangrit, P. T. (1990b). Kinetic parameters of hafnium dichloride electroreduction in NaCl-KCl melt. Russian Journal of Electrochemistry, 26, 98–101.

    Google Scholar 

  • Nekhamkin, L. G. (1979). Metallurgy of zirconium and hafnium. Moscow, Russia: Metallurgiya. (in Russian)

    Google Scholar 

  • Ruda, G. I., Samgina, O. Y., & Smirnov, V. P. (1983). Phase composition and thermal resistance of Hf-Nb alloys. Zashchita Metallov, 19, 984–987. (in Russian)

    CAS  Google Scholar 

  • Sayir, A. (2002). Ultrahigh temperature composite. In The 1st ECHEM Workshop on Electrosynthesis of High Temperature Materials from Non-Aqueous Media & Related Topics, September 9–10, 2002 (pp. 42–59). Wiener Neustadt, Austria.

  • Shatinskiy, V. D., & Nesterenko, F. I. (1988). Protecting diffusional coatings. Kiev, Ukraine: Naukova dumka. (in Russian)

    Google Scholar 

  • Shunk, F. A. (1969). Constitution of binary alloys (2nd supplement). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Tylkina, M. A., & Tsygonova, I. A. (1964). System hafniumniobium. Zhurnal Neorganicheskoi Khimii, 9, 1650–1652. (in Russian)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, S.A. Electrodeposition of hafnium and hafnium-based coatings in molten salts. Chem. Pap. 66, 511–518 (2012). https://doi.org/10.2478/s11696-012-0132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0132-8

Keywords

Navigation