Skip to main content
Log in

Bicontinuous nanodisc and nanospherical titania materials prepared by sol-gel process in reverse microemulsion

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles with different shapes and sizes were synthesised by the sol-gel route in Water/Brij78/Hexane reverse microemulsions. The aqueous cores of these microemulsions were used as nanoreactors to control sol-gel reactions. We studied the effect of water/surfactant mole ratio (W 0) on the morphology, and textural properties of the final products. The materials thus obtained were characterised by different techniques. Thermogravimetric and differential thermal analysis (TG-DTA) was used to study the thermal behaviour of the products and X-ray diffraction (XRD) to identify the crystalline phases. The morphological and textural properties of the products were determined by scattering electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method, respectively. We also studied the influence of thermal treatment on the structure and size of the TiO2 particles. The effect of W 0 on the anatase-rutile phase transition temperature was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Byun, D. J., Jin, Y. K., Kim, B. J., Lee, J. K., & Park, D. K. (2000). Photocatalytic TiO2 deposition by chemical vapor deposition. Journal of Hazardous Materials, B73, 199–206. DOI: 10.1016/s0304-3894(99)00179-x.

    Article  Google Scholar 

  • Cullity, B. D. (1956). Elements of X-ray diffraction (pp. 259–262). Reading, MA, USA: Addison-Wesley Publishing Company.

    Google Scholar 

  • Czanderna, A. W., Ramachandra Rao, C. N., & Honig, J. M. (1958). The anatase-rutile transition. Part 1.—Kinetics of the transformation of pure anatase. Transactions of the Faraday Society, 54, 1069–1073. DOI: 10.1039/tf9585401069.

    Article  CAS  Google Scholar 

  • de Dios, M., Barroso, F., & Tojo, C. (2009). Nanoparticles formation in microemulsions: Mechanism and Monte Carlo simulations. In M. Fanun (Ed.), Microemulsions: Properties and applications (Surfactant science series, Vol. 144, Chapter 16, pp. 451–461). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Deorsola, F. A., & Vallauri, D. (2009). Study of the process parameters in the synthesis of TiO2 nanospheres through reactive microemulsion precipitation. Powder Technology, 190, 304–309. DOI:10.1016/j.powtec.2008.08.009.

    Article  CAS  Google Scholar 

  • Ding, X. Z., & Liu, X. H. (1998). Correlation between anataseto-rutile transformation and grain growth in nanocrystalline titania powders. Journal of Materials Research, 13, 2556–2559. DOI:10.1557/jmr.1998.0356.

    Article  CAS  Google Scholar 

  • Dransfield, G., Guest, P. J., Lyth, P. L., McGarvey, D. J., & Truscott, T. G. (2000). Photoactivity tests of TiO2-based inorganic sunscreens — Part 1: Non-aqueous dispersions. Journal of Photochemistry and Photobiology B: Biology, 59, 147–151. DOI: 10.1016/s1011-1344(00)00144-5.

    Article  CAS  Google Scholar 

  • Gao, L. A., & Zhao, Q. H. (2001). Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles. Scripta Materialia, 44, 1195–1198. DOI:10.1016/s1359-6462(01)00681-9.

    Article  CAS  Google Scholar 

  • Gribb, A. A., & Banfield, J. F. (1997). Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 82, 717–728.

    CAS  Google Scholar 

  • Hishita, S., Mutoh, I., Koumoto, K., & Yanagida, H. (1983). Inhibition mechanism of the anatase-rutile phase transformation by rare earth oxides. Ceramics International, 9, 61–67. DOI: 10.1016/0272-8842(83)90025-1.

    Article  CAS  Google Scholar 

  • Hsiang, H. I., & Li, S. C. (2008). Effects of aging on nanocrystalline anatase-to-rutile phase transformation kinetics. Ceramics International, 34, 557–561. DOI:10.1016/j.ceramint.2006.12.004.

    Article  CAS  Google Scholar 

  • Hu, Y., Tsai, H. L., & Huang, C. L. (2003). Phase transformation of precipitated TiO2 nanoparticles. Materials Science and Engineering: A, 344, 209–214. DOI: 10.1016/s0921-5093(02)00408-2.

    Article  Google Scholar 

  • Kanei, N., Watanabe, K. I., & Kunieda, H. (2003). Effect of added perfume on the stability of discontinous cubic phase. Journal of Oleo Science, 52, 607–619. DOI:10.5650/jos.52.607.

    Article  CAS  Google Scholar 

  • Karanikolos, G. N., Alexandridis, P., Mallory, R., Petrou, A., & Mountziaris, T. J. (2005). Templated synthesis of ZnSe nanostructures using lyotropic liquid crystals. Nanotechnology, 16, 2372–2380. DOI: 10.1088/0957-4484/16/10/063.

    Article  CAS  Google Scholar 

  • Kim, E. J., & Hahn, S. H. (2001). Microstructural changes of microemulsion-mediated TiO2 particles during calcination. Materials Letters, 49, 244–249. DOI: 10.1016/s0167-577x(00)00382-7.

    Article  CAS  Google Scholar 

  • Kim, C. S., Kwon, I. M., Byung, K. M, Jeong, J. H., Choi, B. C., Kim, J. H., Choi, H., Yi, S. S., Yoo, D. H., Hong, K. S., Park, J. H., & Lee, H. S. (2007). Synthesis and particle size effect on the phase transformation of nanocrystalline TiO2. Materials Science and Engineering C, 27, 1343–1346. DOI:10.1016/j.msec.2006.12.006.

    Article  CAS  Google Scholar 

  • Kongsuebchart, W., Praserthdam, P., Panpranot, J., Sirisuk, A., Supphasrirongjaroen, P., & Satayaprasert, C. (2006). Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis. Journal of Crystal Growth, 297, 234–238. DOI:10.1016/j.jcrysgro.2006.09.018.

    Article  CAS  Google Scholar 

  • Kumar, K. N. P. (1995). Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites. Scripta Metallurgica et Materialia, 32, 873–877.

    Article  CAS  Google Scholar 

  • Kumar, K. N. P., Keizer, K., Burggraaf, A. J., Okubo, T., Nagamoto, H., & Morooka, S. (1992). Densification of nanostructured titania assisted by a phase transformation. Nature, 358, 48–51. DOI: 10.1038/358048a0.

    Article  CAS  Google Scholar 

  • Lee, M. S., Lee, G. D., Ju, C. S., & Hong, S. S. (2005a). Preparations of nanosized TiO2 in reverse microemulsion and their photocatalytic activity. Solar Energy Materials and Solar Cells, 88, 389–401. DOI:10.1016/j.solmat.2004.11.010.

    Article  CAS  Google Scholar 

  • Lee, M. S., Park, S. S., Lee, G. D., Ju, C. S., & Hong, S. S. (2005b). Synthesis of TiO2 particles by reverse microemulsion method using nonionic surfactants with dif ferent hydrophilic and hydrophobic group and their photocatalytic activity. Catalysis Today, 101, 283–290. DOI:10.1016/j.cattod.2005.03.018.

    Article  CAS  Google Scholar 

  • Lee, K. M, Suryanarayanan, V., & Ho, K. C. (2007). A study on the electron transport properties of TiO2 electrodes indyesensitized solar cells. Solar Energy Materials and Solar Cells, 91, 1416–1420. DOI:10.1016/j.solmat.2007.03.007.

    Article  CAS  Google Scholar 

  • Lee, J. H., & Yang, Y. S. (2005). Effect of hydrolysis conditions on morphology and phase content in the crystalline TiO2 nanoparticles synthesized from aqueous TiCl4 solution by precipitation. Materials Chemistry and Physics, 93, 237–242. DOI:10.1016/j.matchemphys.2005.03.020.

    Article  CAS  Google Scholar 

  • Li, Y., White, T. J., & Lim, S. H. (2004). Low-temperature synthesis and microstructural control of titania nano-particles. Journal of Solid State Chemistry, 177, 1372–1381. DOI:10.1016/j.jssc.2003.11.016.

    Article  CAS  Google Scholar 

  • Liao, D. L., & Liao, B. Q. (2007). Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. Journal of Photochemistry and Photobiology A: Chemistry, 187, 363–369. DOI:10.1016/j.jphotochem.2006.11.003.

    Article  CAS  Google Scholar 

  • Lindman, B. & Friberg, S. E. (1999). Microemulsions — A historical overview. In P. Kumar, & K. L. Mittal (Eds.), Handbook of microemulsion science and technology (pp. 10–11). New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Liu, J. K., An, T. C., Li, G. Y., Bao, N. Z., Sheng, G. Y., & Fu, J. M. (2009). Preparation and characterization of highly active mesoporous TiO2 photocatalysts by hydrothermal synthesis under weak acid conditions. Microporous and Mesoporous Materials, 124, 197–203. DOI:10.1016/j.micromeso.2009.05.009.

    Article  CAS  Google Scholar 

  • Lu, C. H., Wu, W. H., & Kale, R. B. (2008). Microemulsionmediated hydrothermal synthesis of photocatalytic TiO2 powders. Journal of Hazardous Materials, 154, 649–654. DOI:10.1016/j.jhazmat.2007.10.074.

    Article  CAS  Google Scholar 

  • Mahshid, S., Askari, M., & Sasani Ghamsari, M. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology, 189, 296–300. DOI:10.1016/j.jmatprotec.2007.01.040.

    Article  CAS  Google Scholar 

  • Moran, P. D., Bartlett, J. R., Bowmaker, G. A., Woolfrey, J. L., & Cooney, L. P. (1999). Formation of TiO2 sols, gels and nanopowders from hydrolysis of Ti(OiPr)4 in AOT reverse micelles. Journal of Sol-Gel Science and Technology, 15, 251–262. DOI: 10.1023/a:1008741109896.

    Article  CAS  Google Scholar 

  • Nguyen, T. V., Lee, H. C., & Yang, O. B. (2006). The effect of pre-thermal treatment of TiO2 nano-particles on the performances of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90, 967–981. DOI:10.1016/j.solmat.2005.06.001.

    Article  CAS  Google Scholar 

  • Oh, J. K., Lee, J. K., Kim, S. J., & Park, K. W. (2009). Synthesis of phase and shape-controlled TiO2 nanoparticles via hydrothermal process. Journal of Industrial and Engineering Chemistry, 15, 270–274. DOI:10.1016/j.jiec.2008.10.001.

    Article  CAS  Google Scholar 

  • Pal, M., Narazaki, A., Sasaki, T., & Koshizaki, N. (2001). Parameters effect on the crystallization of Nd:yttrium aluminium garnet laser ablated TiO2 thin films. Journal of Materials Research, 16, 3158–3161. DOI:10.1557/jmr.2001.0435.

    Article  CAS  Google Scholar 

  • Penn, R. L., & Banfield, J. F. (1998). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insight from nanocrystalline TiO2. American Mineralogist, 83, 1077–1082.

    CAS  Google Scholar 

  • Pileni, M. P. (2006). Reverse micelles used as templates: a new understanding in nanocrystal growth. Journal of Experimental Nanoscience, 1, 13–27. DOI:10.1080/17458080500462075.

    Article  CAS  Google Scholar 

  • Rashidzadeh, M. (2008). Synthesis of high-thermal stable titanium dioxide nanoparticles. International Journal of Photoenergy, 2008, 245981. DOI:10.1155/2008/245981.

    Article  Google Scholar 

  • Spurr, R. A., & Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 29, 760–762. DOI: 10.1021/ac60125a006.

    Article  CAS  Google Scholar 

  • Suresh, C., Biju, V., Mukundan, P., & Warrier, K. G. K. (1998). Anatase to rutile transformation in sol-gel titania by modification of precursor. Polyhedron, 17, 3131–3135. DOI:10.1016/s0277-5387(98)00077-1.

    Article  CAS  Google Scholar 

  • Syarif, D. G., Miyashita, A., Yamaki, T., Sumita, T., Choi, Y. S., & Itoh, H. (2002). Preparation of anatase and rutile thin films by controlling oxygen partial pressure. Applied Surface Science, 193, 287–292. DOI: 10.1016/s0169-4332(02)00532-9.

    Article  CAS  Google Scholar 

  • Venkatachalam, N., Palanichamy, M., & Murugesan, V. (2007). Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. Journal of Molecular Catalysis A: Chemical, 273, 177–185. DOI:10.1016/j.molcata.2007.03.077.

    Article  CAS  Google Scholar 

  • Wang, G. H. (2007). Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol-water mixed solutions. Journal of Molecular Catalysis A: Chemical, 274, 185–191. DOI:10.1016/j.molcata.2007.05.009.

    Article  CAS  Google Scholar 

  • Yu, J. C., Zhang, L. Z., & Yu, J. G. (2002). Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New Journal of Chemistry, 26, 416–420. DOI: 10.1039/b109173e.

    Article  CAS  Google Scholar 

  • Zhang, H. Z., & Banfield, J. F. (1998). Thermodynamic analysis of phase stability of nanocrystalline titania. Journal of Materials Chemistry, 8, 2073–2076. DOI: 10.1039/a802619j.

    Article  CAS  Google Scholar 

  • Zhu, K. R., Zhang, M. S., Hong, J. M., & Yin, Z. (2005). Size effect on phase transition sequence of TiO2 nanocrystal. Materials Science and Engineering A, 403, 87–93. DOI:10.1016/j.msea.2005.04.029.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Haouemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haouemi, K., Touati, F. & Gharbi, N. Bicontinuous nanodisc and nanospherical titania materials prepared by sol-gel process in reverse microemulsion. Chem. Pap. 66, 202–210 (2012). https://doi.org/10.2478/s11696-011-0130-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0130-2

Keywords

Navigation