Skip to main content
Log in

Design of polyglycidol-containing microspheres for biomedical applications

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The paper presents a short review on the synthesis, characterisation and selected medical applications of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGL)) microspheres. The soap-free emulsion-polymerisation of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer (PGL) in water yielded core-shell microspheres with a low particle-diameter dispersity (ratio of the weight average particle diameter and the number average particle diameter). The interfacial fraction of PGL units, estimated by XPS, was in the range of 0–42 mole % depending on the concentration of the macromonomer in the polymerisation feed. The studies of adsorption of model proteins showed that the surface fraction of adsorbed protein was significantly reduced when the PGL interfacial fraction was higher than 40 mole %. The P(S/PGL) particles with covalently immobilised proteins were used for the preparation of photonic crystal assemblies suitable for applications in optical biosensors and the medical diagnostic test for the detection of Helicobacter pylori antibodies in the blood serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aizawa, H., Kurosawa, S., Tanaka, M., Wakida, S., Talib, Z. A., Park, J. W., Yoshimoto, M., Muratsugu, M., Hilborn, J., Miyake, J., & Tanaka, H. (2001). Conventional diagnosis of Treponema pallidum in serum using latex piezoelectric immunoassay. Materials Science and Engineering C, 17, 127–132. DOI: 10.1016/s0928-4931(01)00320-4.

    Article  Google Scholar 

  • Andersson, M., Hietala, S., Tenhu, H., & Maunu, S. L. (2006). Polystyrene latex particles coated with crosslinked poly(N-isopropylacrylamide). Colloid and Polymer Science, 284, 1255–1263. DOI: 10.1007/s00396-006-1470-2.

    Article  CAS  Google Scholar 

  • Arshady, R. (Ed.) (1999). Microspheres, microcapsules & liposomes (Vol. 1, Preparation and chemical applications). London, UK: Citus Books.

    Google Scholar 

  • Arshady, R., Margel, S., Pichot, C., & Delair, T. (1999). Functionalization of preformed microspheres. In R. Arshady (Ed.), Microspheres, microcapsules & liposomes (Vol. 1, Chapter 6, pp. 165–196). London, UK: Citus Books.

    Google Scholar 

  • Basinska, T. (2001). Adsorption studies of human serum albumin, human γ-globulins, and human fibrinogen on P(S/PGL) microspheres. Journal of Biomaterials Science, Polymer Edition, 12, 1359–1371. DOI: 10.1163/156856202753419277.

    Article  CAS  Google Scholar 

  • Basinska, T., Kergoat, L., Mangeney, C., Chehimi, M. M., & Slomkowski, S. (2007). Poly(styrene/α-tertbutoxy-ω-vinylbenzyl-polyglycidol) microspheres for the preparation of novel photonic crystals. e-Polymers, 087.

  • Basinska, T., Kowalczyk, D., Miksa, B., & Slomkowski, S. (1995). Interaction of proteins with polymeric latexes. Polymers for Advanced Technologies, 6, 526–533. DOI: 10.1002/pat.1995.220060714.

    Article  CAS  Google Scholar 

  • Basinska, T., & Slomkowski, S. (1995). Attachment of horseradish peroxidase (HRP) onto the poly(styrene/acrolein) latexes and onto their derivatives with amino groups on the surface; activity of immobilized enzyme. Colloid and Polymer Science, 273, 431–438. DOI: 10.1007/bf00656887.

    Article  CAS  Google Scholar 

  • Basinska, T., Slomkowski, S., & Delamar, M. (1993). Synthesis and characterization of polystyrene core/polyacrolein shell latexes. Journal of Bioactive and Compatible Polymers, 8, 205–219. DOI: 10.1177/088391159300800301.

    Article  CAS  Google Scholar 

  • Basinska, T., Slomkowski, S., Dworak, A., Panchev, I., & Chehimi, M. M. (2001). Synthesis and characterization of poly(styrene/α-t-butoxy-ω-vinylbenzyl-polyglycidol) microspheres. Colloid and Polymer Science, 279, 916–924. DOI: 10.1007/s003960100517.

    Article  CAS  Google Scholar 

  • Basinska, T., Slomkowski, S., Kazmierski, S., & Chehimi, M. M. (2008). Properties of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility. Langmuir, 24, 8465–8472. DOI: 10.1021/la800836t.

    CAS  Google Scholar 

  • Basinska, T., Slomkowski, S., Kazmierski, S., Dworak, A., & Chehimi, M. M. (2004). Studies of the surface layer structure and properties of poly(styrene/α-t-butoxy-ω-polyglycidol) microspheres by carbon nuclear magnetic resonance, Xray photoelectron spectroscopy, and the adsorption of human serum albumin and γ-globulins. Journal of Polymer Science Part A: Polymer Chemistry, 42, 615–623. DOI: 10.1002/pola.10863.

    Article  CAS  Google Scholar 

  • Basinska, T., Wisniewska, M., & Chmiela, M. (2005). Principle of a new immunoassay based on electrophoretic mobility of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres: Application for the determination of Helicobacter pylori IgG in blood serum. Macromolecular Bioscience, 5, 70–77. DOI: 10.1002/mabi.200400112.

    Article  CAS  Google Scholar 

  • Búcsi, A., Forcada, J., Gibanel, S., Héroguez, V., Fontanille, M., & Gnanou, Y. (1998). Monodisperse polystyrene latex particles functionalized by the macromonomer technique. Macromolecules, 31, 2087–2097. DOI: 10.1021/ma971434q.

    Article  Google Scholar 

  • Caballero, M., Ruiz, R., Márquez de Prado, M., Seco, M., Borque, L., & Escanero, J. F. (1999). Development of microparticle-enhanced nephelometric immunoassay for quantitation of human lysozyme in pleural effusion and plasma. Journal of Clinical Laboratory Analysis, 13, 301–307. DOI: 10.1002/(SICI)1098-2825(1999)13:6〈301::AIDJCLA9t>3.0.CO;2-3.

    Article  CAS  Google Scholar 

  • Daly, E., & Saunders, B. R. (2000). A study of the effect of electrolyte on the swelling and stability of poly(Nisopropylacrylamide) microgel dispersions. Langmuir, 16, 5546–5552. DOI: 10.1021/la991292o.

    Article  CAS  Google Scholar 

  • DeSousaDelgado, A., Leonard, M., & Dellacherie, E. (2000). Surface modification of polystyrene nanoparticles using dextrans and dextran-POE copolymers: Polymer adsorption and colloidal characterization. Journal of Biomaterials Science, Polymer Edition, 11, 1395–1410. DOI: 10.1163/156856200744309.

    Article  Google Scholar 

  • Duracher, D., Elaïssari, A., Mallet, F., & Pichot, C. (2000). Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core-shell poly(styrene)-poly(N-isopropylacrylamide) particles. Langmuir, 16, 9002–9008. DOI: 10.1021/la0004045.

    Article  CAS  Google Scholar 

  • Dworak, A., Panchev, I., Trzebicka, B., & Walach, W. (1998). Poly(α-t-butoxy-ω-styrylo-glycidol): a new reactive surfactant. Polymer Bulletin, 40, 461–468. DOI: 10.1007/s002890050277.

    Article  CAS  Google Scholar 

  • Fitton, A. O., Hill, J., Jane, D. E., & Millar, R. (1987). Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis, 1987, 1140–1142. DOI: 10.1055/s-1987-28203.

    Article  Google Scholar 

  • Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., Slomkowski, S., Millot, M. C., Othmane, A., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011). Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. Langmuir, 27, 9285–9294. DOI: 10.1021/la200290k.

    CAS  Google Scholar 

  • Ganachaud, F., Sauzedde, F., Elaïssari, A., & Pichot, C. (1997). Emulsifier-free emulsion copolymerization of styrene with two different amino-containing cationic monomers. I. Kinetic studies. Journal of Applied Polymer Science, 65, 2315–2330. DOI: 10.1002/(SICI)1097-4628(19970919)65:12〈2315::AIDAPP6〉3.0.CO;2-C.

    CAS  Google Scholar 

  • Gibanel, S., Heroguez, V., Gnanou, Y., Aramendia, E., Bucsi, A., & Forcada, J. (2001). Monodispersed polystyrene latex particles functionalized by the macromonomer technique. II. Application in immunodiagnosis. Polymers for Advanced Technologies, 12, 494–499. DOI: 10.1002/pat.108.

    Article  CAS  Google Scholar 

  • Gosecka, M., Griffete, N., Mangeney, C., Chehimi, M. M., Slomkowski, S., & Basinska, T. (2011). Preparation and optical properties of novel bioactive photonic crystals obtained from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Colloid and Polymer Science, 289, 1511–1518. DOI: 10.1007/s00396-011-2447-3.

    Article  CAS  Google Scholar 

  • Green, R. J., Davies, M. C., Roberts, C. J., & Tendler, S. J. B. (1998). A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. Journal of Biomedical Materials Research, 42, 165–171. DOI: 10.1002/(SICI)1097-4636(199811)42:2〈165::AIDJBM1〉3.0.CO;2-N.

    Article  CAS  Google Scholar 

  • Griffete, N., Dybkowska, M., Glebocki, B., Basinska, T., Connan, C., Maître, A., Chehimi, M. M., Slomkowski, S., & Mangeney, C. (2010). Thermoresponsive colloidal crystals built from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Langmuir, 26, 11550–11557. DOI: 10.1021/la100537v.

    Article  CAS  Google Scholar 

  • Halacheva, S., Rangelov, S., & Tsvetanov, C. (2006). Poly(glycidol)-based analogues to pluronic block copolymers. Synthesis and aqueous solution properties. Macromolecules, 39, 6845–6852. DOI: 10.1021/ma061040b.

    CAS  Google Scholar 

  • Hazot, P., Delair, T., Elaïssari, A., Chapel, J. P., & Pichot, C. (2002). Functionalization of poly(N-ethylmethacrylamide) thermosensitive particles by phenylboronic acid. Colloid and Polymer Science, 280, 637–646. DOI: 10.1007/s00396-002-0664-5.

    Article  CAS  Google Scholar 

  • Heller, W., & Pangonis, W. J. (1957). Theoretical investigations on the light scattering of colloidal spheres. I. The specific turbidity. The Journal of Chemical Physics, 26, 498–506. DOI: 10.1063/1.1743332.

    Article  CAS  Google Scholar 

  • Hong, J., Hong, C. K., & Shim, S. E. (2007). Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 225–233. DOI: 10.1016/j.colsurfa.2007.02.027.

    Article  CAS  Google Scholar 

  • Imaz, A., Miranda, J. I., Ramos, J., & Forcada, J. (2008). Evidences of a hydrolysis process in the synthesis of Nvinylcaprolactambased microgels. European Polymer Journal, 44, 4002–4011. DOI: 10.1016/j.eurpolymj.2008.09.027.

    Article  CAS  Google Scholar 

  • Jamróz-Piegza, M., Utrata-Wesołek, A., Trzebicka, B., & Dworak, A. (2006). Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. European Polymer Journal, 42, 2497–2506. DOI: 10.1016/j.eurpolymj.2006.04.017.

    Article  Google Scholar 

  • Kawaguchi, H., Sato, Y., Okumura, A., & Kyo, M. (2005). Enhancement of sensitivity and selectivity in surface plasmon resonance detection of a DNA point mutation by polymeric microspheres. e-Polymers, 050.

  • Kim, J. H., & Ballauff, M. (1999). The volume transition in thermosensitive core-shell latex particles containing charged groups. Colloid and Polymer Science, 277, 1210–1214. DOI: 10.1007/s003960050512.

    Article  CAS  Google Scholar 

  • Lacroix-Desmazes, P., & Guyot, A. (1996). Reactive surfactants in heterophase polymerization. 2. Maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media. Macromolecules, 29, 4508–4515. DOI: 10.1021/ma951849g.

    Article  CAS  Google Scholar 

  • López-León, T., Ortega-Vinuesa, J. L., Bastos-González, D., & Elaïssari, A. (2006). Cationic and anionic poly(N-isopropylacrylamide) based submicron gel particles: Electrokinetic properties and colloidal stability. The Journal of Physical Chemistry B, 110, 4629–4636. DOI: 10.1021/jp0540508.

    Article  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Lucas, L. J., Chesler, J. N., & Yoon, J. Y. (2007). Lab-on-achip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosensors and Bioelectronics, 23, 675–681. DOI: 10.1016/j.bios.2007.08.004.

    Article  CAS  Google Scholar 

  • Ma, Q., Wang, X., Li, Y., Shi, Y., & Su, X. (2007). Multicolor quantum dot-encoded microspheres for the detection of biomolecules. Talanta, 72, 1446–1452. DOI: 10.1016/j.talanta.52007.01.058.

    Article  CAS  Google Scholar 

  • Miksa, B., Wilczynska, M., Cierniewski, C., Basinska, T., & Slomkowski, S. (1996). Composite poly(methyl methacrylatemethacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen. Journal of Biomaterials Science, Polymer Edition, 7, 503–513. DOI: 10.1163/156856295x00562.

    Article  Google Scholar 

  • Okubo, M., Yamamoto, Y., & Kamei, S. (1989). XPS analysis (ESCA) of the surface composition of poly(styrene/2-hydroxyethyl methacrylate) microspheres produced by emulsifier-free emulsion polymerization. Colloid and Polymer Science, 267, 861–865. DOI: 10.1007/bf01410333.

    Article  CAS  Google Scholar 

  • Okumura, A., Sato, Y., Kyo, M., & Kawaguchi, H. (2005). Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Analytical Biochemistry, 339, 328–337. DOI: 10.1016/j.ab.2005.01.017.

    Article  CAS  Google Scholar 

  • Omer-Mizrahi, M., & Margel, S. (2009). Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution. Journal of Colloid and Interface Science, 329, 228–234. DOI: 10.1016/j.jcis.2008.09.047.

    Article  CAS  Google Scholar 

  • Ouali, L., Stoll, S., Pefferkorn, E., Elaissari, A., Lanet, V., Pichot, C., & Mandrand, B. (1995). Coagulation of antibodysensitized latexes in the presence of antigen. Polymers for Advanced Technologies, 6, 541–546. DOI: 10.1002/pat.1995.220060716.

    Article  CAS  Google Scholar 

  • Polpanich, D., Tangboriboonrat, P., Elaissari, A., & Udomsangpetch, R. (2007). Detection of malaria infection via latex agglutination assay. Analytical Chemistry, 79, 4690–4695. DOI: 10.1021/ac070502w.

    Article  CAS  Google Scholar 

  • Revilla, J., Elaïssari, A., Pichot, C., & Gallot, B. (1995). Surface functionalization of polystyrene latex particles with a liposaccharide monomer. Polymers for Advanced Technologies, 6, 455–464. DOI: 10.1002/pat.1995.220060706.

    Article  CAS  Google Scholar 

  • Rosen, S. L. (1993). Fundamental principles of polymeric materials (2nd ed.). New York, NY, USA: Wiley-Interscience.

    Google Scholar 

  • Sajjadi, S. (2007). Nanoparticle formation by monomer-starved semibatch emulsion polymerization. Langmuir, 23, 1018–1024. DOI: 10.1021/la062397b.

    Article  CAS  Google Scholar 

  • Sanz Izquierdo, M. P., Martín-Molina, A., Ramos, J., Rus, A., Borque, L., Forcada, J., & Galisteo-González, F. (2004). Amino, chloromethyl and acetal-functionalized latex particles for immunoassays: a comparative study. Journal of Immunological Methods, 287, 159–167. DOI: 10.1016/j.jim.2004.01.020.

    Article  Google Scholar 

  • Slomkowski, S., Alemán, J. V., Gilbert, R. G., Hess, M., Horie, K., Jones, R. G., Kubisa, P., Meisel, I., Mormann, W., Penczek, S., & Stepto, R. F. T. (2011). Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure and Applied Chemistry, 83, 2229–2259. DOI: 10.1351/pac-rec-10-06-03.

    Article  CAS  Google Scholar 

  • Slomkowski, S., & Basinska, T. (2010). Polymer nano- and microparticle based systems for medical diagnostics. Macromolecular Symposia, 295, 13–22. DOI: 10.1002/masy.200900084.

    Article  CAS  Google Scholar 

  • Slomkowski, S., Basinska, T., & Miksa, B. (2002). New types of microspheres and microsphere-related materials for medical diagnostics. Polymers for Advanced Technologies, 13, 906–918. DOI: 10.1002/pat.283.

    Article  CAS  Google Scholar 

  • Sofia, S. J., Premnath, V., & Merrill, E. W. (1998). Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules, 31, 5059–5070. DOI: 10.1021/ma971016l.

    Article  CAS  Google Scholar 

  • Soini, J. T., Waris, M. E., & Hänninen, P. E. (2004). Detection methods of microsphere based single-step bioaffinity and in vitro diagnostics assays. Journal of Pharmaceutical and Biomedical Analysis, 34, 753–760. DOI: 10.1016/s0731-7085(03)00562-4.

    Article  CAS  Google Scholar 

  • Takata, S., Shibayama, M., Sasabe, R., & Kawaguchi, H. (2003). Preparation and structure characterization of hairy nanoparticles consisting of hydrophobic core and thermosensitive hairs. Polymer, 44, 495–501. DOI: 10.1016/s0032-3861(02)00768-1.

    Article  CAS  Google Scholar 

  • Texter, J. (2003). Polymer colloids in photonic materials. Comptes Rendus Chimie, 6, 1425–1433. DOI: 10.1016/j.crci.2003.07.014.

    Article  CAS  Google Scholar 

  • Zhou, G., Veron, L., Elaissari, A., Delair, T., & Pichot, C. (2004). A new route for the preparation of cyano-containing poly(N-isopropylacrylamide) microgel latex for specific immobilization of antibodies. Polymer International, 53, 603–608. DOI: 10.1002/pi.1439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Basinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basinska, T., Slomkowski, S. Design of polyglycidol-containing microspheres for biomedical applications. Chem. Pap. 66, 352–368 (2012). https://doi.org/10.2478/s11696-011-0122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0122-2

Keywords

Navigation