Skip to main content
Log in

Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armelin, E., Pla, R., Liesa, F., Ramis, X., Iribarren, J. I., & Alemán, C. (2008). Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corrosion Science, 50, 721–728. DOI: 10.1016/j.corsci.2007.10.006.

    Article  CAS  Google Scholar 

  • Armes, S. P. (1987). Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synthetic Metals, 20, 365–371. DOI: 10.1016/0379-6779 (87)90833-2.

    Article  CAS  Google Scholar 

  • Aydinli, B., Toppare, L., & Tinçer, T. (1999). A conducting composite of polypyrrole with ultrahigh molecular weight polyethylene foam. Journal of Applied Polymer Science, 72, 1843–1850. DOI: 10.1002/(SICI)1097-4628(19990628)72:14 〈1843::AID-APP6〉3.0.CO;2-L.

    Article  CAS  Google Scholar 

  • Baibarac, M., & Gómez-Romero, P. (2006). Nanocomposites based on conducting polymers and carbon nanotubes: From fancy materials to functional applications. Journal of Nanoscience and Nanotechnology, 6, 289–302. DOI: 10.1166/jnn.2006.002.

    CAS  Google Scholar 

  • Baibarac, M., Baltog, I., & Lefrant, S. (2011). Recent progress in synthesis, vibrational characterization and applications trend of conjugated polymers/carbon nanotubes composites. Current Organic Chemistry, 15, 1160–1196. DOI: 10.2174/138527211795203022.

    CAS  Google Scholar 

  • Barthet, C., Armes, S. P., Chehimi, M.M., Bilem, C., & Omastova, M. (1998). Surface characterization of polyaniline-coated polystyrene latexes. Langmuir, 14, 5032–5038. DOI: 10.1021/la980102r.

    Article  CAS  Google Scholar 

  • Ben Slimane, A., Boukerma, K., Chabut, M., & Chehimi, M. M. (2004a). An inverse gas chromatographic characterization of polypyrrole-coated poly(vinyl chloride) powder particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240, 45–53. DOI: 10.1016/j.colsurfa.2004.03.009.

    Article  CAS  Google Scholar 

  • Ben Slimane, A., Chehimi, M. M., & Vaulay, M. J. (2004b). Polypyrrole-coated poly(vinyl chloride) powder particles: surface chemical and morphological characterisation by means of X-ray photoelectron spectroscopy and scanning electron microscopy. Colloid and Polymer Science, 282, 314–323. DOI: 10.1007/s00396-003-0934-x.

    Article  CAS  Google Scholar 

  • Berdjane, Z., Rueda, D. R., & Balta-Calleja, F. J. (1993). Influence of polymerization time on the properties of polypyrrole grown at the surface of sulfonated polyethylene films. Synthetic Metals, 55, 1153–1158. DOI: 10.1016/0379-6779(93)90216-j.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., & De, A. (1996). Conducting composites of polypyrrole and polyaniline. A review. Progress in Solid State Chemistry, 24, 141–181. DOI: 10.1016/0079-6786(96)00002-7.

    Article  CAS  Google Scholar 

  • Bleha, M., Kůdela, V., Rosova, E. Y., Polotskaya, G. A., Kozlov, A. G., & Elyashevich, G. K. (1999). Synthesis and characterization of thin polypyrrole layers on polyethylene microporous films. European Polymer Journal, 35, 613–620. DOI: 10.1016/s0014-3057(98)00161-x.

    Article  CAS  Google Scholar 

  • Boukerma, K., Mičušík, M., Mravčáková, M., Omastová, M., Vaulay, M. J., Beaunier, P., & Chehimi, M. M. (2007). Surfactant-assisted control of the surface energy and interfacial molecular interactions of polypyrrole. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293, 28–38. DOI: 10.1016/j.colsurfa.2006.07.005.

    Article  CAS  Google Scholar 

  • Boukerma, K., Omastová, M., Fedorko, P., & Chehimi, M. M. (2005). Surface properties and conductivity of bis(2-ethylhexyl) sulfosuccinate-containing polypyrrole. Applied Surface Science, 249, 303–314. DOI: 10.1016/j.apsusc.2004.12.011.

    Article  CAS  Google Scholar 

  • Boukerma, K., Piquemal, J. Y., Chehimi, M. M., Mravčáková, M., Omastová, M., & Beaunier, P. (2006). Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites. Polymer, 47, 569–576. DOI: 10.1016/j.polymer.2005.11.065.

    Article  CAS  Google Scholar 

  • Breimer, M. A., Yevgeny, G., Sy, S., & Sadik, O. A. (2001). Incorporation of metal nanoparticles in photopolymerized organic conducting polymers: a mechanistic insight. Nano Letters, 1, 305–308. DOI: 10.1021/nl015528w.

    Article  CAS  Google Scholar 

  • Buruianä, T., Diaconu, I., Buruianä, E. C., Han, X., & Guo, F. (1997). Synthesis and characterization of polypyrrole-polyurethane cationomer composites. Die Angewandte Makromolekulare Chemie, 245, 139–147. DOI: 10.1002/apmc.1997.052450112.

    Article  Google Scholar 

  • Butterworth, M. D., Corradi, R., Johal, J., Lascelles, S. F., Maeda, S., & Armes, S. P. (1995). Zeta potential measurements on conducting polymer-inorganic oxide nanocomposite particles. Journal of Colloid and Interface Science, 174, 510–517. DOI: 10.1006/jcis.1995.1418.

    Article  CAS  Google Scholar 

  • Cairns, D. B., Armes, S. P., & Bremer, L. G. B. (1999a). Synthesis and characterization of submicrometer-sized polypyrrole-polystyrene composite particles. Langmuir, 15, 8052–8058. DOI: 10.1021/la990442s.

    Article  CAS  Google Scholar 

  • Cairns, D. B., Armes, S. P., Chehimi, M. M., Perruchot, C., & Delamar, M. (1999b). X-ray photoelectron spectroscopy characterization of submicrometer-sized polypyrrole-polystyrene composites. Langmuir, 15, 8059–8066. DOI: 10.1021/la990443k.

    Article  CAS  Google Scholar 

  • Cairns, D. B., Khan, M. A., Perruchot, C., Riede, A., & Armes, S. P. (2003). Synthesis and characterization of polypyrrole-coated poly(alkyl methacrylate) latex particles. Chemistry of Materials, 15, 233–239. DOI: 10.1021/cm020385f.

    Article  CAS  Google Scholar 

  • Castillo-Ortega, M. M., Inoue, M. B., & Inoue, M. (1989). Chemical synthesis of highly conducting polypyrrole by the use of copper(II) perchlorate as an oxidant. Synthetic Metals, 28, C65–C70. DOI: 10.1016/0379-6779(89)90500-6.

    Article  CAS  Google Scholar 

  • Čeppan, M., Mikula, M., Fiala, R., Brezová, V., Blažková, A., & Panák, J. (1997). A study of photoelectrochemical deposition of organic layers on sol-gel TiO2 surfaces. Chemical Papers, 51, 193–197.

    Google Scholar 

  • Chang, B. H., Liu, Z. Q., Sun, L. F., Tang, D. S., Zhou, W. Y., Wang, G., Qian, L. X., Xie, S. S., Fen, J. H., & Wan, M. X. (2000). Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. Journal of Low Temperature Physics, 119, 41–48. DOI: 10.1023/a:1004656418144.

    Article  CAS  Google Scholar 

  • Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W., Fray, D. J., & Windle, A. H. (2000). Carbon nanotube and polypyrrole composites: Coating and doping. Advanced Materials, 12, 522–526. DOI: 10.1002/(SICI)1521-4095(200004)12:7〈522::AID-ADMA522〉3.0.CO;2-S.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, W., Li, G., Li, C., & Zhang, Y. (2011). Synthesis of P(St-MAA)-Fe3O4/PPy core-shell composite microspheres with conductivity and superparamagnetic behaviors. Synthetic Metals, 161, 1921–1927. DOI: 10.1016/j.synthmet.2011.06.036.

    Article  CAS  Google Scholar 

  • Chen, X. B., Issi, J. P., Cassart, M., Devaux, J., & Billaud, D. (1994). Temperature dependence of the conductivity in conducting polymer composites. Polymer, 35, 5256–5258. DOI: 10.1016/0032-3861(94)90477-4.

    Article  CAS  Google Scholar 

  • Chen, X., Issi, J. P., Devaux, J., & Billaud, D. (1995a). Chemically oxidized polypyrrole: Influence of the experimental conditions on its electrical conductivity and morphology. Polymer Engineering & Science, 35, 642–647. DOI: 10.1002/pen.760350803.

    Article  CAS  Google Scholar 

  • Chen, X. B., Issi, J. P., Devaux, J., & Billaud, D. (1995b). The conducting behavior and stability of conducting polymer composites. Polymer Engineering & Science, 35, 637–641. DOI: 10.1002/pen.760350802.

    Article  CAS  Google Scholar 

  • Cho, S. H., Kim, W. Y., Jeong, G. K., & Lee, Y. S. (2005). Synthesis of nano-sized polypyrrole-coated polystyrene latexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255, 79–83. DOI: 10.1016/j.colsurfa.2004.12.025.

    Article  CAS  Google Scholar 

  • Dai, T., Yang, X., & Lu, Y. (2007). Conductive composites of polypyrrole and sulfonic-functionalized silica spheres. Materials Letters, 61, 3142–3145. DOI: 10.1016/j.matlet.2006.11.012.

    Article  CAS  Google Scholar 

  • Dall’Olio, A., Dascola, G., Varacca, V., & Biochi, V. (1968). Resonance paramagnetique electronique et conductivité d’un noir d’oxypyrrol electrolytique. Comptes Rendus de l’Académie des Sciences C (Paris), 267C, 433–435.

    Google Scholar 

  • De Jesus, M. C., Fu, Y., & Weiss, R. A. (1997). Conductive polymer blends prepared by in situ polymerization of pyrrole: A review. Polymer Engineering & Science, 37, 1936–1943. DOI: 10.1002/pen.11844.

    Article  Google Scholar 

  • de Oliveira, H. P., Andrade, C. A. S., & de Melo, C. P. (2008). Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles. Journal of Colloid and Interface Science, 319, 441–449. DOI: 10.1016/j.jcis.2007.11.011.

    Article  CAS  Google Scholar 

  • De Paoli, M. A. (1997). Conductive polymer blends and composites. In H. S. Nalwa (Ed.), Handbook of organic conductive molecules and polymers (Vol. 2, pp. 773–798). Chichester, UK: Wiley.

    Google Scholar 

  • De Paoli, M. A., Waltman, R. J., Diaz, A. F., & Bargon, J. (1984). Conductive composties form poly(vinyl chloride) and polypyrrole. Journal of the Chemical Society, Chemical Communications, 1984, 1015–1016. DOI: 10.1039/c39840001015.

    Article  Google Scholar 

  • Diaz, A. F., Kanazawa, K. K., & Gardini, G. P. (1979). Electrochemical polymerization of pyrrole. Journal of the Chemical Society, Chemical Communications, 1979, 635–636. DOI: 10.1039/c39790000635.

    Article  Google Scholar 

  • Fan, F. R. F., & Bard, A. J. (1986). Polymer films on electrodes. XIX. Electrochemical behavior at polypyrrole-nafion and polypyrrole-clay thin films on glassy carbon electrodes. Journal of the Electrochemical Society, 133, 301–304. DOI: 10.1149/1.2108566.

    CAS  Google Scholar 

  • Fan, J., Wan, M., Zhu, D., Chang, B., Pan, Z., & Xie, S. (1999). Synthesis and properties of carbon nanotube-polypyrrole composites. Synthetic Metals, 102, 1266–1267. DOI: 10.1016/s0379-6779(98)01462-3.

    Article  CAS  Google Scholar 

  • Fang, F. F., Choi, H. J., & Joo, J. (2008). Conducting polymer/clay nanocomposites and their applications. Journal of Nanoscience and Nanotechnology, 8, 1559–1581. DOI: 10.1166/jnn.2008.036.

    Article  CAS  Google Scholar 

  • Faverolle, F., Attias, A. J., Bloch, B., Audebert, P., & Andrieux, C. P. (1998). Highly conducting and strongly adhering polypyrrole coating layers deposited on glass substrates by a chemical process. Chemistry of Materials, 10, 740–752. DOI: 10.1021/cm970466p.

    Article  CAS  Google Scholar 

  • Fritsche, J. (1840). Ueber das Anilin, ein neues Ersetzungsproduct des Indigo. Journal für Praktische Chemie, 20, 453–459. DOI: 10.1002/prac.18400200161.

    Article  Google Scholar 

  • Fu, Y., Weiss, R. A., Gan, P. P., & Bessette, M. D. (1998). Conductive elastomeric foams prepared by in situ vapor phase polymerization of pyrrole and copolymerization of pyrrole and N-methylpyrrole. Polymer Engineering & Science, 38, 857–862. DOI: 10.1002/pen.10251.

    Article  CAS  Google Scholar 

  • Fujii, S., Matsuzawa, S., Nakamura, Y., Ohtaka, A., Teratani, T., Akamatsu, K., Tsuruoka, T., & Nawafune, H. (2010). Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media. Langmuir, 26, 6230–6239. DOI: 10.1021/la9039545.

    Article  CAS  Google Scholar 

  • Gangopadhyay, R., & De, A. (2000). Conducting polymer nanocomposites: A brief overview. Chemistry of Materials, 12, 608–622. DOI: 10.1021/cm990537f.

    Article  CAS  Google Scholar 

  • Genies, E. M., Bidan, G., & Diaz, A. F. (1983). Spectro-electrochemical study of polypyrrole films. Journal of Electroanalytical Chemistry, 149, 101–113. DOI: 10.1016/s0022-0728(83)80561-0.

    Article  CAS  Google Scholar 

  • Goldman, D., & Lellouche, J. P. (2010). An easy method for the production of functional polypyrrole/MWCNT and polycarbazole/MWCNT composites using nucleophilic multiwalled carbon nanotubes. Carbon, 48, 4170–4177. DOI: 10.1016/j.carbon.2010.07.032.

    Article  CAS  Google Scholar 

  • Han, M., Zhao, K., Zhang, Y., Chen, Z., & Chu, Y. (2007). Dielectric properties of polystyrene-polypyrrole core-shell conducting spheres suspended in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 174–180. DOI: 10.1016/j.colsurfa.2007.02.019.

    Article  CAS  Google Scholar 

  • Hao, L., Zhu, C., Chen, C., Kang, P., Hu, Y., Fan, W., & Chen, Z. (2003). Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synthetic Metals, 139, 391–396. DOI: 10.1016/s0379-6779(03)00193-0.

    Article  CAS  Google Scholar 

  • He, F., Omoto, M., Yamamoto, T., & Kise, H. (1995). Preparation of polypyrrole-polyurethane composite foam by vapor phase oxidative polymerization. Journal of Applied Polymer Science, 55, 283–287. DOI: 10.1002/app.1995.070550211.

    Article  CAS  Google Scholar 

  • Heinze, J. (1990). Electronically conducting polymers. Topics in Current Chemistry, 152, 1–47. DOI: 10.1007/bfb0034363.

    Article  CAS  Google Scholar 

  • Hernandez, R., Diaz, A. F., Waltman, R., & Bargon, J. (1984). Surface characteristics of thin films prepared by plasma and electrochemical polymerizations. The Journal of Physical Chemistry, 88, 3333–3337. DOI: 10.1021/j150659a039.

    Article  Google Scholar 

  • Huijs, F. M., Lang, J., Kalicharan, D., Vercauteren, F. F., Van Der Want, J. J. L., & Hadziioannou, G. (2001). Formation of transparent conducting films based on core-shell latices: Influence of the polypyrrole shell thickness. Journal of Applied Polymer Science, 79, 900–909. DOI: 10.1002/1097-4628(20010131)79:5〈900::AID-APP140〉3.0.CO;2-P.

    Article  CAS  Google Scholar 

  • Huijs, F. M., Vercauteren, F. F., & Hadziioannou, G. (2002). Resistance of transparent latex films based on acrylic latexes encapsulated with a polypyrrole shell. Synthetic Metals, 125, 395–400. DOI: 10.1016/s0379-6779(01)00484-2.

    Article  CAS  Google Scholar 

  • Jang, J., & Oh, J. H. (2005). Fabrication of a highly transparent conductive thin film from polypyrrole/poly(methyl methacrylate) core/shell nanospheres. Advanced Functional Materials, 15, 494–502. DOI: 10.1002/adfm.200400095.

    Article  CAS  Google Scholar 

  • Kanazawa, K. K., Diaz, A. F., Gleiss, R. H., Gill, W. D., Kwak, J. F., Logan, J. A., Rabolt, J. F., & Street, G. B. (1979). ’Organic metals’: polypyrrole, a stable synthetic ‘metallic’ polymer. Journal of the Chemical Society, Chemical Communications, 1979, 854–855. DOI: 10.1039/c39790000854.

    Article  Google Scholar 

  • Kayrak-Talay, D., Akman, U., & Hortaçsu, Ö. (2008). Supercritical carbon dioxide immobilization of glucose oxidase on polyurethane/polypyrrole composite. The Journal of Supercritical Fluids, 44, 457–465. DOI: 10.1016/j.supflu.2007.09.013.

    Article  CAS  Google Scholar 

  • Kern, J. M., & Sauvage, J. P. (1989). Photochemical deposition of electrically conducting polypyrrole. Journal of the Chemical Society, Chemical Communications, 1989, 657–658. DOI: 10.1039/c39890000657.

    Article  Google Scholar 

  • Khan, M. A., & Armes, S. P. (2000). Conducting polymer-coated latex particles. Advanced Materials, 12, 671–674. DOI: 10.1002/(SICI)1521-4095(200005)12:9〈671::AIDADMA671〉3.0.CO;2-3.

    Article  CAS  Google Scholar 

  • Kim, J. W., Liu, F., Choi, H. J., Hong, S. H., & Joo, J. (2003). Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method. Polymer, 44, 289–293. DOI: 10.1016/s0032-3861(02)00749-8.

    Article  CAS  Google Scholar 

  • Kim, Y. T., Kim, W. S., Rhee, H. W., & Song, M. K. (2006). Iron corrosion protection by ultra-thin conductive films based on polypyrrole/poly(methyl methacrylate) composite. Molecular Crystals and Liquid Crystals, 445, 193–200. DOI: 10.1080/15421400500367116.

    CAS  Google Scholar 

  • Kobayashi, Y., Ishida, S., Ihara, K., Yasuda, Y., Morita, T., & Yamada, S. (2009). Synthesis of metallic copper nanoparticles coated with polypyrrole. Colloid and Polymer Science, 287, 877–880. DOI: 10.1007/s00396-009-2047-7.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: do]10.2478/s11696-009-0101-z.

    Article  CAS  Google Scholar 

  • Kotal, M., Srivastava, S. K., & Paramanik, B. (2011). Enhancements in conductivity and thermal stabilities of polypyrrole/polyurethane nanoblends. The Journal of Physical Chemistry C, 115, 1496–1505. DOI: 10.1021/jp1081643.

    Article  CAS  Google Scholar 

  • Kudoh, Y. (1996). Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactants. Synthetic Metals, 79, 17–22. DOI: 10.1016/s0379-6779(97)80072-0.

    Article  CAS  Google Scholar 

  • Kurachi, K., & Kise, H. (1995). Anisotropy in electrical conduction of polypyrrole/polyethylene composite films by drawing. Macromolecular Chemistry and Physics, 196, 929–936. DOI: 10.1002/macp.1995.021960320.

    Article  CAS  Google Scholar 

  • Lahiff, E., Lynam, C., Gilmartin, N., O’Kennedy, R., & Diamond, D. (2010). The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Analytical and Bioanalytical Chemistry, 398, 1575–1589. DOI: 10.1007/s00216-010-4054-4.

    Article  CAS  Google Scholar 

  • Lascelles, S. F., & Armes, S. P. (1995). Synthesis and characterization of micrometer-sized polypyrrole-coated polystyrene latexes. Advanced Materials, 7, 864–866. DOI: 10.1002/adma.19950071011.

    Article  CAS  Google Scholar 

  • Lascelles, S. F., & Armes, S. P. (1997). Synthesis and characterization of micrometre-sized, polypyrrole-coated polystyrene latexes. Journal of Materials Chemistry, 7, 1339–1347. DOI: 10.1039/a700237h.

    Article  CAS  Google Scholar 

  • Lascelles, S. F, Armes, S. P., Zhdan, P. A., Greaves, S. J., Brown, A. M., Watts, J. F., Leadley, S. R., & Luk, S. Y. (1997). Surface characterization of micrometre-sized, polypyrrole-coated polystyrene latexes: verification of a ‘core-shell’ morphology. Journal of Materials Chemistry, 7, 1349–1355. DOI: 10.1039/a700236j.

    Article  CAS  Google Scholar 

  • Lee, J. W., Kim, J. H., Chun, Y. S., Yoo, Y. T., & Hong, S. M. (2009). The performance of nafion-based IPMC actuators containing polypyrrole/alumina composite fillers. Macromolecular Research, 17, 1032–1038. DOI: 10.1007/bf03218653.

    Article  CAS  Google Scholar 

  • Lee, J. Y., Kim, D. Y., & Kim, C. Y. (1995). Synthesis of soluble polypyrrole of the doped state in organic-solvents. Synthetic Metals, 74, 103–106. DOI: 10.1016/0379-6779(95)03359-9.

    Article  CAS  Google Scholar 

  • Lee, K., Cho, S., Park, S. H., Heeger, A. J., Lee, C. W., & Lee, S. H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705.

    Article  CAS  Google Scholar 

  • Lépinay, S., Khémara, K., Millot, M. C., & Carbonnier, B. (2012). In-situ polymerized molecularly imprinted polymeric thin films used as sensing layer within surface plasmon resonance sensor: Mini review focused on 2010-2011. Chemical Papers, 66, 340–351. DOI: do]10.2478/s11696-012-0134-6.

    Article  CAS  Google Scholar 

  • Letaïef, S., Aranda, P., & Ruiz-Hitzky, E. (2005). Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Applied Clay Science, 28, 183–198. DOI: 10.1016/j.clay.2004.02.008.

    Article  CAS  Google Scholar 

  • Letheby, H. (1862). XXIX.-On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society, 15, 161–163. DOI: 10.1039/js8621500161.

    Article  Google Scholar 

  • Li, T., Zeng, X., & Xu, J. (2007). Preparation and characterization of conductive polypyrrole/organophilic montorillonite nanocomposite. Polymer-Plastics Technology and Engineering, 46, 751–757. DOI: 10.1080/03602550701305005.

    Article  CAS  Google Scholar 

  • Mabrook, M. F., Pearson, C., & Petty, M. C. (2006). Inkjet-printed polypyrrole thin films for vapour sensing. Sensors and Actuators B: Chemical, 115, 547–551. DOI: 10.1016/j.snb.2005.10.019.

    Article  CAS  Google Scholar 

  • Madani, A., Nessark, B., Brayner, R., Elaissari, H., Jouini, M., Mangeney, C., & Chehimi, M. M. (2010). Carboxylic acid-functionalized, core-shell polystyrene@polypyrrole microspheres as platforms for the attachment of CdS nanoparticles. Polymer, 51, 2825–2835. DOI: 10.1016/j.polymer.2010.04.020.

    Article  CAS  Google Scholar 

  • Maeda, S., & Armes, S. P. (1995). Surface area measurements on conducting polymer-inorganic oxide nanocomposites. Synthetic Metals, 73, 151–155. DOI: 10.1016/0379-6779(95)03315-7.

    Article  CAS  Google Scholar 

  • Malinauskas, A. (2001). Chemical deposition of conducting polymers. Polymer, 42, 3957–3972. DOI: 10.1016/s0032-3861(00)00800-4.

    Article  CAS  Google Scholar 

  • Mangeney, C., Fertani, M., Bousalem, S., Zhicai, M., Ammar, S., Herbst, F., Beaunier, P., Elaissari, A., & Chehimi, M. M. (2007). Magnetic Fe2O3-polystyrene/PPy core/shell particles: Bioreactivity and self-assembly. Langmuir, 23, 10940–10949. DOI: 10.1021/la700492s.

    Article  CAS  Google Scholar 

  • Mano, V., Felisberti, M. I., Matencio, T., & De Paoli, M. A. (1996). Thermal, mechanical and electrochemical behaviour of poly(vinyl chloride)/polypyrrole blends (PVC/PPy). Polymer, 37, 5165–5170. DOI: 10.1016/0032-3861(96)00339-4.

    Article  CAS  Google Scholar 

  • Matencio, T., Mano, V., Felisberti, M. I., & De Paoli, M. A. (1994). Electrochemical study of poly(vinyl chloride)/polypyrrole blends. Electrochimica Acta, 39, 1393–1400. DOI: 10.1016/0013-4686(94)e0067-a.

    Article  CAS  Google Scholar 

  • Mathew, K. T., Kumar, A. V. P., & John, H. (2006). Polyaniline and polypyrrole with PVC content for effective EMI shielding. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (Vol. 1–3, pp. 443–444). Washington, DC, USA: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • McNeill, R., Siudak, R., Wardlaw, J. H., & Weiss, D. E. (1963). Electronic conduction in polymers. I. The chemical structure of polypyrrole. Australian Journal of Chemistry, 16, 1056–1075. DOI: 10.1071/ch9631056.

    CAS  Google Scholar 

  • Mengoli, G., Munari, M. T., Bianco, P., & Musiani, M. M. (1981). Anodic synthesis of polyaniline coatings onto Fe sheets. Journal of Applied Polymer Science, 26, 4247–4257. DOI: 10.1002/app.1981.070261224.

    Article  CAS  Google Scholar 

  • Mi, H., Zhang, X., Xu, Y., & Xiao, F. (2010). Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Applied Surface Science, 256, 2284–2288. DOI: 10.1016/j.apsusc.2009.10.053.

    Article  CAS  Google Scholar 

  • Mičušík, M., Omastová, M., Boukerma, K., Albouy, A., Chehimi, M. M., Trchová, M., & Fedorko, P. (2007). Preparation, surface chemistry, and electrical conductivity of novel silicon carbide/polypyrrole composites containing an anionic surfactant. Polymer Engineering & Science, 47, 1198–1206. DOI: 10.1002/pen.20690.

    Article  CAS  Google Scholar 

  • Morita, M., Hashida, I., & Nishimura, M. (1988). Conducting polypyrrole composite thin films chemically prepared by spreading on surface of aqueous solution containing oxidizing agent. Journal of Applied Polymer Science, 36, 1639–1650. DOI: 10.1002/app.1988.070360711.

    Article  CAS  Google Scholar 

  • Moučka, R., Mravčáková, M., Vilčáková, J., Omastová, M., & Sáha, P. (2011). Electromagnetic absorption efficiency of polypropylene/montmorillonite/polypyrrole nanocomposites. Materials and Design, 32, 2006–2011. DOI: 10.1016/j.matdes.2010.11.064.

    Article  CAS  Google Scholar 

  • Mravčáková, M., Boukerma, K., Omastová, M., & Chehimi, M. M. (2006). Montmorillonite/polypyrrole nanocomposites. The effect of organic modification of clay on the chemical and electrical properties. Materials Science and Engineering C, 26, 306–313. DOI: 10.1016/j.msec.2005.10.044.

    Article  CAS  Google Scholar 

  • Mravčáková, M., Omastová, M., Olejníková, K., Pukánszky, B., & Chehimi, M. M. (2007). The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites: A comparative study. Synthetic Metals, 157, 347–357. DOI: 10.1016/j.synthmet.2007.04.005.

    Article  CAS  Google Scholar 

  • Myers, R. E. (1986). Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. Journal of Electronic Materials, 15, 61–69. DOI: 10.1007/bf02649904.

    Article  CAS  Google Scholar 

  • Nakata, M., & Kise, H. (1993). Preparation of polypyrrolepoly( vinyl chloride) composite films by interphase oxidative polymerization. Polymer Journal, 25, 91–94. DOI: 10.1295/polymj.25.91.

    Article  CAS  Google Scholar 

  • Neoh, K. G., Teo, H. W., Kang, E. T., & Tan, K. L. (1998). Enhancement of growth and adhesion of electroactive polymer coatings on polyolefin substrates. Langmuir, 14, 2820–2826. DOI: 10.1021/la971380d.

    Article  CAS  Google Scholar 

  • Njuguna, J., & Pielichowski, K. (2004). Recent developments in polyurethane-based conducting composites. Journal of Materials Science, 39, 4081–4094. DOI: 10.1023/b:jmsc.0000033387.51728.de.

    Article  CAS  Google Scholar 

  • Nyström, G., Razaq, A., Strømme, M., Nyholm, L., & Mihranyan, A. (2009). Ultrafast all-polymer paper-based batteries. Nano Letters, 9, 3635–3639. DOI: 10.1021/nl901852h.

    Article  CAS  Google Scholar 

  • Oh, E. J., Jang, K. S., & MacDiarmid, A. G. (2002). High molecular weight soluble polypyrrole. Synthetic Metals, 125, 267–272. DOI: 10.1016/s0379-6779(01)00384-8.

    Article  CAS  Google Scholar 

  • Omastová, M., Boukerma, K., Chehimi, M. M., & Trchová, M. (2005). Novel silicon carbide/polypyrrole composites; preparation and physicochemical properties. Materials Research Bulletin, 40, 749–765. DOI: 10.1016/j.materresbull.2005.02.010.

    Article  CAS  Google Scholar 

  • Omastová, M., Chodák, I., Pionteck, J., & Pötschke, P. (1998a). Preparation and properties of conducting polyolefins composites. Journal of Macromolecular Science — Pure and Applied Chemistry, 35, 1117–1126. DOI: 10.1080/10601329808002105.

    Article  Google Scholar 

  • Omastová, M., Košina, S., Pionteck, J., Janke, A., & Pavlinec, J. (1996a). Electrical properties and stability of polypyrrole containing conducting polymer composites. Synthetic Metals, 81, 49–57. DOI: 10.1016/0379-6779 (96)80228-1.

    Article  Google Scholar 

  • Omastová, M., Lazár, M., & Košina, S. (1994). Combined electrochemical and chemical synthesis of thick polypyrrole layers and their characterization. Polymer International, 34, 151–156. DOI: 10.1002/pi.1994.210340205.

    Article  Google Scholar 

  • Omastová, M., Mosnčáková, K., Trchová, M., Konyushenko, E. N., Stejskal, J., Fedorko, P., & Prokeš, J. (2010). Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synthetic Metals, 160, 701–707. DOI: 10.1016/j.synthmet.2010.01.004.

    Article  CAS  Google Scholar 

  • Omastová, M., Pavlinec, J., Pionteck, J., & Simon, F. (1997). Synthesis, electrical properties and stability of polypyrrole-containing conducting polymer composites. Polymer International, 43, 109–116. DOI: 10.1002/(SICI)1097-0126(199 706)43:2〈109::AID-PI707〉3.0.CO;2-T.

    Article  Google Scholar 

  • Omastová, M., Pavlinec, J., Pionteck, J., Simon, F., & Košina, S. (1998b). Chemical preparation and characterization of conductive poly(methyl methacrylate)/polypyrrole composites. Polymer, 39, 6559–6566. DOI: 10.1016/s0032-3861(97)10178-1.

    Article  Google Scholar 

  • Omastová, M., Pionteck, J., & Košina, S. (1996b). Preparation and characrerization of electrically conductive polypropylene/polypyrrole composites. European Polymer Journal, 32, 681–689. DOI: 10.1016/0014-3057(95)00206-5.

    Article  Google Scholar 

  • Omastová, M., Piontek, J., Janke, A., & Košina, S. (1996c). The processing and properties of conductive polypropylene/polypyrrole composites. Macromolecular Symposia, 102, 265–272. DOI: 10.1002/masy.19961020132.

    Article  Google Scholar 

  • Omastová, M., & Simon, F. (2000). Surface characterizations of conductive poly(methyl methacrylate)/polypyrrole composites. Journal of Materials Science, 35, 1743–1749. DOI: 10.1023/a:1004728502591.

    Article  Google Scholar 

  • Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8.

    Article  CAS  Google Scholar 

  • Onoda, M., Tada, K., & Nakayama, H. (1999). Preparation of conducting polymer/insulating polymer composite films using molecular self-assembly process. Synthetic Metals, 102, 1253. DOI: 10.1016/s0379-6779(98)01454-4.

    Article  CAS  Google Scholar 

  • Oriakhi, C. O., & Lerner, M. M. (1995). Poly(pyrrole) and poly(thiophene)/clay nanocomposites via latex-colloid interaction. Materials Research Bulletin, 30, 723–729. DOI: 10.1016/0025-5408(95)00054-2.

    Article  CAS  Google Scholar 

  • Ormond-Prout, J., Dupin, D., Armes, S. P., Foster, N. J., & Burchell, M. J. (2009). Synthesis and characterization of polypyrrole-coated poly(methyl methacrylate) latex particles. Journal of Materials Chemistry, 19, 1433–1442. DOI: 10.1039/b816839c.

    Article  CAS  Google Scholar 

  • Ouyang, M., & Chan, C. M. (1996). Electrical and mechanical properties of pre-localized polypyrrole/poly(vinyl chloride) conductive composites. Polymer Engineering & Science, 36, 2676–2682. DOI: 10.1002/pen.10666.

    Article  Google Scholar 

  • Ouyang, M., & Chan, C. M. (1998). Conductive polymer composites prepared by polypyrrole-coated poly(vinyl chloride) powder: relationship between conductivity and surface morphology. Polymer, 39, 1857–1862. DOI: 10.1016/s0032-3861(97)00308-x.

    Article  CAS  Google Scholar 

  • Pandis, C., Logakis, E., Peoglos, V., Pissis, P., Omastová, M., Mravčáková, M., Janke, A., Pionteck, J., Peneva, Y., & Minkova, L. (2009). Morphology, microhardness, and electrical properties of composites based on polypropylene, montmorillonite, and polypyrrole. Journal of Polymer Science Part B: Polymer Physics, 47, 407–423. DOI: 10.1002/polb.21646.

    Article  CAS  Google Scholar 

  • Park, D. P., Sung, J. H., Lim, S. T., Choi, H. J., & Jhon, M. S. (2003). Synthesis and characterization of soluble polypyrrole and polypyrrole/organoclay nanocomposites. Journal of Materials Science Letters, 22, 1299–1302. DOI: 10.1023/a:1025482807726.

    Article  CAS  Google Scholar 

  • Park, K. S., Schougaard, S. B., & Goodenough, J. B. (2007). Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Advanced Materials, 19, 848–851. DOI: 10.1002/adma.200600369.

    Article  CAS  Google Scholar 

  • Pecher, J., & Mecking, S. (2010). Nanoparticles of conjugated polymers. Chemical Reviews, 110, 6260–6279. DOI: 10.1021/cr100132y.

    Article  CAS  Google Scholar 

  • Perruchot, C., Chehimi, M. M., Delamar, M., & Dardoize, F. (2002). Characterisation of the chromatographic properties of a silica-polypyrrole composite stationary phase by inverse liquid chromatography. Journal of Chromatography A, 969, 167–180. DOI: 10.1016/s0021-9673(02)00379-5.

    Article  CAS  Google Scholar 

  • Perruchot, C., Chehimi, M. M., Delamar, M., Eccles, A. J., Steele, T. A., & Mair, C. D. (2000). SIMS analysis of conducting polypyrrole-silica gel composites. Synthetic Metals, 113, 53–63. DOI: 10.1016/s0379-6779(99)00303-3.

    Article  CAS  Google Scholar 

  • Perruchot, C., Chehimi, M. M., Delamar, M., Lacaze, P. C., Eccles, A. J., Steele, T. A., & Mair, C. D. (1999). The role of a silane coupling agent in the preparation of novel hybrid polypyrrole-silica particles. Synthetic Metals, 102, 1194–1197. DOI: 10.1016/s0379-6779(00)89054-2.

    Article  CAS  Google Scholar 

  • Perruchot, C., Chehimi, M. M., Mordenti, D., Briand, M., & Delamar, M. (1998). The role of a silane coupling agent in the synthesis of hybrid polypyrrole-silica gel conducting particles. Journal of Materials Chemistry, 8, 2185–2193. DOI: 10.1039/a803019g.

    Article  CAS  Google Scholar 

  • Pionteck, J., Omastová, M., Pötschke, P., Simon, F., & Chodák, I. (1999). Morphology, conductivity, and mechanical properties of polypyrrole-containing composites. Journal of Macromolecular Science, Part B: Physics, 38, 737–748. DOI: 10.1080/00222349908248135.

    Article  Google Scholar 

  • Planche, M. F., Thiéblemont, J. C., Mazars, N., & Bidan, G. (1994). Kinetic study of pyrrole polymerization with iron(III) chloride in water. Journal of Applied Polymer Science, 52, 1867–1877. DOI: 10.1002/app.1994.070521304.

    Article  CAS  Google Scholar 

  • Pron, A., Gawrys, P., Zagorska, M., Djurado, D., & Demadrille, R. (2010). Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques. Chemical Society Reviews, 39, 2577–2632. DOI: 10.1039/b907999h.

    Article  CAS  Google Scholar 

  • Proń, A., Kucharski, Z., Budrowski, C., Zagórska, M., Krichene, S., Suwalski, J., Dehe, G., & Lefrant, S. (1985). Mössbauerspectroscopy studies of selected conducting polypyrroles. The Journal of Chemical Physics, 83, 5923–5927. DOI: 10.1063/1.449624.

    Article  Google Scholar 

  • Pron, A., & Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science, 27, 135–190. DOI: 10.1016/s0079-6700 (01)00043-0.

    Article  CAS  Google Scholar 

  • Pumera, M., Šmíd, B., Peng, X., Golberg, D., Tang, J., & Ichinose, I. (2007). Spontaneous coating of carbon nanotubes with an ultrathin polypyrrole layer. Chemistry — A European Journal, 13, 7644–7649. DOI: 10.1002/chem.200700211.

    Article  CAS  Google Scholar 

  • Qu, B., Xu, Y. T., Lin, S. J., Zheng, Y. F., & Dai, L. Z. (2010). Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation. Synthetic Metals, 160, 732–742. DOI: 10.1016/j.synthmet.2010.01.012.

    Article  CAS  Google Scholar 

  • Rajapakse, R. M. G., Murakami, K., Bandara, H. M. N., Rajapakse, R. M. M. Y., Velauthamurti, K., & Wijeratne, S. (2010). Preparation and characterization of electronically conducting polypyrrole-montmorillonite nanocomposite and its potential application as a cathode material for oxygen reduction. Electrochimica Acta, 55, 2490–2497. DOI: 10.1016/j.electacta.2009.12.015.

    Article  CAS  Google Scholar 

  • Ramanavičius, A., Ramanavičienè, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51, 6025–6037. DOI: 10. 1016/j.electacta.2005.11.052.

    Article  CAS  Google Scholar 

  • Rapi, S., Bocchi, V., & Gardini, G. P. (1988). Conducting polypyrrole by chemical synthesis in water. Synthetic Metals, 24, 217–221. DOI: 10.1016/0379-6779(88)90259-7.

    Article  CAS  Google Scholar 

  • Redondo, M. I., García, M. V., Sánchez de la Blanca, E., Pablos, M., Carrillo, I., González-Tejera, M. J., & Enciso, E. (2010). Polypyrrole nanocoatings of poly(styrene-co-methacrylic acid) particles. Polymer, 51, 1728–1736. DOI: 10.1016/j.polymer.2010.02.027.

    Article  CAS  Google Scholar 

  • Rinaldi, A. W., Kunita, M. H., Santos, M. J. L., Radovanovic, E., Rubira, A. F., & Girotto, E. M. (2005). Solid phase photopolymerization of pyrrole in poly(vinylchloride) matrix. European Polymer Journal, 41, 2711–2717. DOI: 10.1016/j.eurpolymj.2005.05.029.

    Article  CAS  Google Scholar 

  • Robila, G., Ivanoiu, M., Buruiana, T., & Buruiana, E. C. (1997). Sulfonated polyurethane anionomer-polypyrrole molecular composite. Journal of Applied Polymer Science, 66, 591–595. DOI: 10.1002/(SICI)1097-4628(19971017)66:3〈591::AIDAPP21〉3.0.CO;2-X.

    Article  CAS  Google Scholar 

  • Robilă, G., Diaconu, I., Buruiană, T., Buruiană, E., & Coman, P. (2000). Carboxylated polyurethane anionomers and their composites with polypyrrole. Journal of Applied Polymer Science, 75, 1385–1392. DOI: 10.1002/(SICI)1097-4628(20000314)75:11〈1385::AID-APP10〉3.0.CO;2-Q.

    Article  Google Scholar 

  • Ruckenstein, E., & Park, J. S. (1991). New method for the preparation of thick conducting polymer composites. Journal of Applied Polymer Science, 42, 925–934. DOI: 10.1002/app.1991.070420406.

    Article  CAS  Google Scholar 

  • Ruckenstein, E., & Yang, S. (1993). Processable conductive polypyrrole/poly(alkyl methacrylate) composites prepared by an emulsion pathway. Polymer, 34, 4655–4660. DOI: 10.1016/0032-3861(93)90698-a.

    Article  CAS  Google Scholar 

  • Rueda, D. R., Arribas, C., Balta Calleja, F. J., Fierro, J. L. G., & Palacios, J. M. (1989). Growth of polypyrrole at the surface of sulphonated polyethylene. Synthetic Metals, 28, C77–C81. DOI: 10.1016/0379-6779(89)90502-x.

    Article  CAS  Google Scholar 

  • Sadki, S., Schottland, P., Brodie, N., & Sabouraud, G. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29, 283–293. DOI: 10.1039/a807124a.

    Article  Google Scholar 

  • Sapurina, I., Kazantseva, N. E., Ryvkina, N. G., Prokeš, J., Sáha, P., & Stejskal, J. (2005a). Electromagnetic radiation shielding by composites of conducting polymers and wood. Journal of Applied Polymer Science, 95, 807–814. DOI: 10.1002/app.21240.

    Article  CAS  Google Scholar 

  • Sapurina, I., Stejskal, J., Špírková, M., Kotek, J., & Prokeš, J. (2005b). Polyurethane latex modified with polyaniline. Synthetic Metals, 151, 93–99. DOI: 10.1016/j.synthmet.2005.03.014.

    Article  CAS  Google Scholar 

  • Saravanan, C., Shekhar, R. C., & Palaniappan, S. (2006). Synthesis of polypyrrole using benzoyl peroxide as a novel oxidizing agent. Macromolecular Chemistry and Physics, 207, 342–348. DOI: 10.1002/macp.200500376.

    Article  CAS  Google Scholar 

  • Selvaraj, V., & Alagar, M. (2007). Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochemistry Communications, 9, 1145–1153. DOI: 10.1016/j.elecom.2007.01.011.

    Article  CAS  Google Scholar 

  • Sevil, B., & Zuhal, K. (2010). Synthesis and characterization of polypyrrole nanoparticles and their nanocomposites with poly(propylene). Macromolecular Symposia, 295, 59–64. DOI: 10.1002/masy.200900164.

    Article  CAS  Google Scholar 

  • Shakoor, A., Foot, P. J. S., & Rizvi, T. Z. (2010). Conductive poly(methyl methacrylate)-polypyrrole dodecylbenzenesulfonate (PMMA-PPy.DBSA) blends prepared in solution in the presence of hydroquinone. Journal of Materials Science: Materials in Electronics, 21, 1270–1276. DOI: 10.1007/s10854-010-0060-8.

    Article  CAS  Google Scholar 

  • Shenoy, S. L., Cohen, D., Erkey, C., & Weiss, R. A. (2002). A solvent-free process for preparing conductive elastomers by an in situ polymerization of pyrrole. Industrial & Engineering Chemistry Research, 41, 1484–1488. DOI: 10.1021/ie0108346.

    Article  CAS  Google Scholar 

  • Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 1977, 578–580. DOI: 10.1039/c39770000578.

    Article  Google Scholar 

  • SinhaRay, S., & Biswas, M. (1999). Preparation and evaluation of composites from montmorillonite and some heterocyclic polymers: 3. A water dispersible nanocomposite from pyrrole-montmorillonite polymerization system. Materials Research Bulletin, 34, 1187–1194. DOI: 10.1016/s0025-5408(99)00121-x.

    Article  CAS  Google Scholar 

  • Snook, G. A., Kao, P., & Best, A. S. (2011). Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 196, 1–12. DOI: 10.1016/j.jpowsour.2010.06.084.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857.

    CAS  Google Scholar 

  • Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report). Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577050815.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Prokeš, J., & Zemek, J. (1999). In-situ polymerized polyaniline films. Synthetic Metals, 105, 195–202. DOI: 10.1016/s0379-6779(99)00105-8.

    Article  CAS  Google Scholar 

  • Street, G. B. (1986). Polypyrrole from powers to plastics. In T. A. Skotheim (Ed.), Handbook of conducting polymers (Vol. 1, pp. 265–291). New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Su, P. G., & Wang, C. P. (2008). Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride composite materials. Sensors and Actuators B: Chemical, 129, 538–543. DOI: 10.1016/j.snb.2007.09.011.

    Article  CAS  Google Scholar 

  • Suryanarayanan, V., Wu, C. T., & Ho, K. C. (2010). Molecularly imprinted electrochemical sensors. Electroanalysis, 22, 1795–1811. DOI: 10.1002/elan.200900616.

    Article  CAS  Google Scholar 

  • Tallman, D. E., Levine, K. L., Siripirom, C., Gelling, V. G., Bierwagen, G. P., & Croll, S. G. (2008). Nanocomposite of polypyrrole and alumina nanoparticles as a coating filler for the corrosion protection of aluminium alloy 2024-T3. Applied Surface Science, 254, 5452–5459. DOI: 10.1016/j.apsusc.2008.02.099.

    Article  CAS  Google Scholar 

  • Tishchenko, G., Rosova, E., Elyashevich, G. K., & Bleha, M. (2000). Porosity of microporous polyethylene membranes modified with polypyrrole and their diffusion permeability to low-molecular weight substances. Chemical Engineering Journal, 79, 211–217. DOI: 10.1016/s1385-8947(00)00209-6.

    Article  CAS  Google Scholar 

  • Tsukamoto, J., Takahashi, A., & Kawasaki, K. (1990). Structure and electrical-properties of polyacetylene yielding a conductivity of 105 S/cm. Japanese Journal of Applied Physics, 29, 125–130. DOI: 10.1143/jjap.29.125.

    Article  CAS  Google Scholar 

  • Ueno, T., Arntz, H. D., Flesch, S., & Bargon, J. (1988). Transparent, electrically conductive composites derived from polypyrrole and poly(vinyl chloride) by vapor-phase polymerization: Effect of environment on polymerization and reaction mechanism. Journal of Macromolecular Science: Part A — Chemistry, A25, 1557–1573. DOI: 10.1080/10601328808055088.

    Article  Google Scholar 

  • Virji, S., Fowler, J. D., Baker, C. O., Huang, J., Kaner, R. B., & Weiller, B. H. (2005). Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small, 1, 624–627. DOI: 10.1002/smll.200400155.

    Article  CAS  Google Scholar 

  • Wallace, G. G., Spinks, G. M., Kane-Maquire, L. A. P., & Teasdale, P. R. (2003). Conductive electroactive polymers: intelligent materials systems (2nd ed., Chapter 2, pp. 51–88). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Waltman, R. J., & Bargon, J. (1986). Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Canadian Journal of Chemistry, 64, 76–95. DOI: 10.1139/v86-015.

    Article  CAS  Google Scholar 

  • Wang, Y., Sotzing, G. A., & Weiss, R. A. (2008). Preparation of conductive polypyrrole/polyurethane composite foams by in situ polymerization of pyrrole. Chemistry of Materials, 20, 2574–2582. DOI: 10.1021/cm800005r.

    Article  CAS  Google Scholar 

  • Wen, T. C., Hung, S. L., & Digar, M. (2001). Effect of polypyrrole on the morphology and ionic conductivity of TPU electrolyte containing LiClO4. Synthetic Metals, 118, 11–18. DOI: 10.1016/s0379-6779(00)00272-1.

    Article  CAS  Google Scholar 

  • Weng, B., Shepherd, R. L., Crowley, K., Killard, A. J., & Wallace, G. G. (2010). Printing conducting polymers. Analyst, 135, 2779–2789. DOI: 10.1039/c0an00302f.

    Article  CAS  Google Scholar 

  • Wiersma, A. E., & Van de Steeg, L. M. A. (1994). Dispersion of electrically conductive particles in a dispersing medium. European Patent No. EP 0589529 (A1). The Hague, The Netherlands: European Patent Office.

    Google Scholar 

  • Wiersma, A. E., vd Steeg, L. M. A., & Jongeling, T. J. M. (1995). Waterborne core-shell dispersions based on intrinsically conducting polymers for coating applications. Synthetic Metals, 71, 2269–2270. DOI: 10.1016/0379-6779(94)03254-4.

    Article  CAS  Google Scholar 

  • Wu, T. M., & Lin, S. H. (2006). Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. Journal of Polymer Science Part A: Polymer Chemistry, 44, 6449–6457. DOI: 10.1002/pola.21724.

    Article  CAS  Google Scholar 

  • Wu, T. M., Yen, S. J., Chen, E. C., & Chiang, R. K. (2008). Synthesis, characterization, and properties of monodispersed magnetite coated multi-walled carbon nanotube/polypyrrole nanocomposites synthesized by in-situ chemical oxidative polymerization. Journal of Polymer Science Part B: Polymer Physics, 46, 727–733. DOI: 10.1002/polb.21404.

    Article  CAS  Google Scholar 

  • Xu, P., Han, X., Zhang, B., Mack, N. H., Jeon, S. H., & Wang, H. L. (2009). Synthesis and characterization of nanostructured polypyrroles: Morphology-dependent electrochemical responses and chemical deposition of Au nanoparticles. Polymer, 50, 2624–2629. DOI: 10.1016/j.polymer.2009.03.005.

    Article  CAS  Google Scholar 

  • Yao, T., Wang, C., Wu, J., Lin, Q., Lv, H., Zhang, K., Yu, K., & Yang, B. (2009). Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 338, 573–577. DOI: 10.1016/j.jcis.2009.05.001.

    Article  CAS  Google Scholar 

  • Yip, Y., Benabderrahmane, S., Zhicai, M., Bousalem, S., Mangeney, C., & Chehimi, M. M. (2006). Interactions of reactive polypyrrole-coated polystyrene latex particles with gold nanoparticles and silanized glass. Surface and Interface Analysis, 38, 535–538. DOI: 10.1002/sia.2234.

    Article  CAS  Google Scholar 

  • Yoon, C. O., Moses, R. M. D., & Heeger, A. J. (1994). Transport near the metal-insulator transition: Polypyrrole doped with PF6. Physical Review B, 49, 10851–10863. DOI: 10.1103/PhysRevB.49.10851.

    Article  CAS  Google Scholar 

  • Yoshino, K., Morita, S., Yin, X. H., Onoda, M., Yamamoto, H., Watanuki, T., & Isa, I. (1993a). Electrical property of polypyrrole-insulating polymer composite. Synthetic Metals, 55–57, 3562–3565. DOI: 10.1016/0379-6779(93)90476-d.

    Article  Google Scholar 

  • Yoshino, K., Yin, X. H., Morita, S., Nakanishi, Y., Nakagawa, S. Yamamoto, H., Watanuki, T., & Isa, I. (1993b). Preparation and electrical property of polypyrrole-polyethylene composite. Japanese Journal of Applied Physics Part 1,32, 979–981. DOI: 10.1143/jjap.32.979.

    Article  Google Scholar 

  • Zhang, B., Xu, Y., Zheng, Y., Dai, L., Zhang, M., Yang, J., Chen, Y., Chen, X., & Zhou, J. (2011). A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Research Letters, 6, 431. DOI: 10.1186/1556-276x-6-431.

    Article  Google Scholar 

  • Zhang, X., Zhang, J., Wang, R., Zhu, T., & Liu, Z. (2004) Surfactant-directed polypyrrole/CNT nanocables: Synthesis, characterization, and enhanced electrical properties. ChemPhysChem, 5, 998–1002. DOI: 10.1002/cphc.200301217.

    Article  CAS  Google Scholar 

  • Zheng, W., Razal, J. M., Whitten, P. G., Ovalle-Robles, R., Wallace, G. G., Baughman, R. H., & Spinks, G. M. (2011). Artificial muscles based on polypyrrole/carbon nanotubes laminates. Advanced Materials, 23, 2966–2970. DOI: 10.1002/adma.201100512.

    Article  CAS  Google Scholar 

  • Zinger, B., & Kijel, D. (1991). Electrically conducting polyethylene/polypyrrole films. Synthetic Metals, 41–43, 1013–1023. DOI: 10.1016/0379-6779(91)91548-o.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Omastová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omastová, M., Mičušík, M. Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chem. Pap. 66, 392–414 (2012). https://doi.org/10.2478/s11696-011-0120-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0120-4

Keywords

Navigation