Skip to main content
Log in

Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study is directed towards investigating the role of the surface treatment of clay particles on the rheological and thermomechanical behaviour of clay-epoxy blends. Nanocomposites were prepared by mixing small amounts (5–10 mass %) of commercial organoclays or raw clays with an epoxy system commonly used in civil engineering. Rheological characterisations in the liquid state revealed a pronounced thixotropic character of the organoclay-based systems, which all exhibited a shear-thinning behaviour above a critical stress threshold (yield stress), depending on both the intensity of interfacial interactions and the degree of filler dispersion. On the other hand, systems based on raw clay particles behaved like Newtonian fluids, in the same way as the unreinforced polymer matrix. Complementary dynamic mechanical analyses (DMA) performed on the cured cross-linked nanocomposites also showed significant changes in the viscoelastic behaviour of the epoxy matrix due to the introduction of organoclays, whereas only minor variations were observed following the introduction of raw fillers. These results were consistent with nanoscale morphological characterisations performed by conventional X-ray diffraction (XRD) on the various hybrid systems. In this context, rheology and DMA appear as attractive alternative methods for assessing the filler dispersion at a macroscopic (and possibly more relevant) scale. This research is of practical interest for civil engineers, since clay reinforced-epoxies could in the future be used as coating materials with enhanced barrier performances, in order to protect infrastructures against environmental ageing or corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, A., & Kodur, V. K. R. (2011). Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams. Composites Part B: Engineering, 42, 226–237. DOI: 10.1016/j.compositesb.2010.11.004.

    Article  Google Scholar 

  • Almusallam, A. A., Khan, F. M., Dulaijan, S. U., & Al-Amoudi, O. S. B. (2003). Effectiveness of surface coatings in improving concrete durability. Cement and Concrete Composites, 25, 473–481. DOI: 10.1016/s0958-9465(02)00087-2.

    Article  CAS  Google Scholar 

  • Almusallam, A., Khan, F. M., & Maslehuddin, M. (2002). Performance of concrete coating under varying exposure conditions. Materials and Structures, 35, 487–494. DOI: 10.1007/bf02483136.

    Article  CAS  Google Scholar 

  • Benzarti, K., Chataigner, S., Quiertant, M., Marty, C., & Aubagnac, C. (2011). Accelerated ageing behaviour of the adhesive bond between concrete specimens and CFRP overlays. Construction and Building Materials, 25, 523–538. DOI: 10.1016/j.conbuildmat.2010.08.003.

    Article  Google Scholar 

  • Brown, J., Rhoney, I., & Pethrick, R. A. (2004). Epoxy resin based nanocomposites: 1. Diglycidylether of bisphenol A (DGEBA) with triethylenetetramine (TETA). Polymer International, 53, 2130–2137. DOI: 10.1002/pi.1638.

    Article  CAS  Google Scholar 

  • Corcione, C. E., Frigione, M., & Acierno, D. (2009). Rheological characterization of UV-curable epoxy systems: Effects of o-Boehmite nanofillers and a hyperbranched polymeric modifier. Journal of Applied Polymer Science, 112, 1302–1310. DOI: 10.1002/app.29603.

    Article  CAS  Google Scholar 

  • Corcione, C. E., Cavallo, A., Pesce, E., Greco, A., & Maffezzoli, A. (2011). Evaluation of the degree of dispersion of nanofillers by mechanical, rheological, and permeability analysis. Polymer Engineering & Science, 51, 1280–1285. DOI: 10.1002/pen.21929.

    Article  CAS  Google Scholar 

  • Coussot, P., Nguyen, Q. D., Huynh, H. T., & Bonn, D. (2002). Avalanche behavior in yield stress fluids. Physical Review Letters, 88, 175551. DOI: 10.1103/PhysRevLett.88.175501.

    Google Scholar 

  • Djouani, F., Herbst, F., Chehimi, M. M., & Benzarti, K. (2010). Preparation of exfoliated clay/polymer nanocomposites via organosilane grafting and in situ ATRP of glycidyl methacrylate. Surface and Interface Analysis, 42, 1019–1024. DOI: 10.1002/sia.3259.

    Article  CAS  Google Scholar 

  • Djouani, F., Herbst, F., Chehimi, M. M., & Benzarti, K. (2011). Synthesis, characterization and reinforcing properties of novel, reactive clay/poly(glycidyl methacrylate) nanocomposites. Construction and Building Materials, 25, 424–431. DOI: 10.1016/j.conbuildmat.2010.01.003.

    Article  Google Scholar 

  • Durmus, A., Kasgoz, A., & Macosko, C. W. (2007). Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer, 48, 4492–4502. DOI: 10.1016/j.polymer.2007.05.074.

    CAS  Google Scholar 

  • Ferroir, T., Huynh, H. T., Château, X., & Coussot, P. (2004). Motion of solid object through a pasty (thixotropic) fluid. Physics of Fluids, 16, 594–601. DOI: 10.1063/1.1640372.

    Article  CAS  Google Scholar 

  • Gamage, J. C. P. H., Al-Mahaidi, R., & Wong, M. B. (2006). Bond characteristics of CFRP plated concrete members under elevated temperatures. Composite Structures, 75, 199–205. DOI: 10.1016/j.compstruct.2006.04.068.

    Article  Google Scholar 

  • Hackman, I., & Hollaway, L. (2006). Epoxy-layered silicate nanocomposites in civil engineering. Composites Part A: Applied Science and Manufacturing, 37, 1161–1170. DOI: 10.1016/j.compositesa.2005.05.027.

    Article  Google Scholar 

  • Hrachová, J, Chodák, I., & Komadel, P. (2009). Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber. Chemical Papers, 63, 55–61. DOI: 10.2478/s11696-008-0079-y.

    Article  Google Scholar 

  • Huynh, H. T., Roussel, N., & Coussot, P. (2005). Aging and free surface flow of a thixotropic fluid. Physics of Fluids, 17, 033101. DOI: 10.1063/1.1844911.

    Article  Google Scholar 

  • Ingram, S., Dennis, H., Hunter, I., Liggat, J. J., McAdam, C., Pethrick, R. A, Schaschke, C., & Thomson, D. (2008). Influence of clay type on exfoliation, cure and physical properties of in situ polymerised poly(methyl methacrylate) nanocomposites. Polymer International, 57, 1118–1127. DOI: 10.1002/pi.2453.

    Article  CAS  Google Scholar 

  • Issa, C. A., & Debs, P. (2007). Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, 21, 157–163. DOI: 10.1016/j.conbuildmat.2005.06.030.

    Article  Google Scholar 

  • Jeon, H. S., Rameshwaram, J. K., Kim, G., & Weinkauf, D. H. (2003). Characterization of polyisoprene-clay nanocomposites prepared by solution blending. Polymer, 44, 5749–5758. DOI: 10.1016/s0032-3861(03)00466-x.

    Article  CAS  Google Scholar 

  • Kaynak, C., Nakas, G. I., & Isitman, N. A. (2009). Mechanical properties, flammability and char morphology of epoxy resin/montmorillonite nanocomposites. Applied Clay Science, 46, 319–324. DOI: 10.1016/j.clay.2009.08.033.

    Article  CAS  Google Scholar 

  • Le Pluart, L., Duchet, J., Sautereau, H., Halley, P., & Gerard, J. F. (2004). Rheological properties of organoclays suspensions in epoxy network precursors. Applied Clay Science, 25, 207–219. DOI: 10.1016/j.clay.2003.11.004.

    Article  Google Scholar 

  • Legghe, E., Aragon, E., Bélec, L., Margaillan, A., & Melot, D. (2009). Correlation between water diffusion and adhesion loss: Study of an epoxy primer on steel. Progress in Organic Coatings, 66, 276–280. DOI: 10.1016/j.porgcoat.2009.08.001.

    Article  CAS  Google Scholar 

  • Lertwimolnun, W., & Vergnes, B. (2004). Influence de la dispersion sur le comportement rhéologique de nanocomposites polypropylčne/argile. Rhéologie, 5, 27–35.

    Google Scholar 

  • Mays, G. C., & Hutchinson, A. R. (1992). Adhesives in civil engineering. Cambridge, UK: Cambridge University Press. DOI: 10.1017/cbo9780511529597.

    Book  Google Scholar 

  • Mays, G. C. (2001). Performance requirements for structural adhesives in relation to concrete strengthening. International Journal of Adhesion & Adhesives, 21, 423–429. DOI: 10.1016/s0143-7496(01)00019-7.

    Article  CAS  Google Scholar 

  • Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer-layered silicate nanocomposites. Progress in Polymer Science, 33, 1119–1198. DOI: 10.1016/j.progpolymsci.2008.07.008.

    Article  CAS  Google Scholar 

  • Ren, J. X., Silva, A. S., & Krishnamoorti, R. (2000). Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules, 33, 3739–3746. DOI: 10.1021/ma992091u.

    Article  CAS  Google Scholar 

  • Rodrigues, M. P. M. C., Costa, M., Mendes, A. M., & Eusébio Marques, M. I. (2000). Effectiveness of surface coatings to protect reinforced concrete in marine environments. Materials & Structures, 33, 618–626. DOI: 10.1007/bf02480601.

    Article  CAS  Google Scholar 

  • Selvaraj, R., Selvaraj, M., & Iyer, S. V. K. (2009). Studies on the evaluation of the performance of organic coatings used for the prevention of corrosion of steel rebars in concrete structures. Progress in Organic Coatings, 64, 454–459. DOI: 10.1016/j.porgcoat.2008.08.005.

    Article  CAS  Google Scholar 

  • Shi, X. M., Nguyen, T. A., Suo, Z. Y., Liu, Y. J., & Avci, R. (2009). Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surface & Coatings Technology, 204, 237–245. DOI: 10.1016/j.surfcoat.2009.06.048.

    Article  CAS  Google Scholar 

  • Wagener, R., & Reisinger, T. J. G. (2003). A rheological method to compare the degree of exfoliation of nanocomposites. Polymer, 44, 7513–7518. DOI: 10.1016/j.polymer.2003.01.001.

    Article  CAS  Google Scholar 

  • Woo, R. S. C., Zhu, H. G., Chow, M. M. K, Leung, C. K. Y., & Kim, J. K. (2008). Barrier performance of silane-clay nanocomposite coatings on concrete structure. Composites Science and Technology, 68, 2828–2836. DOI: 10.1016/j.compscitech.2007.10.028.

    Article  CAS  Google Scholar 

  • Xia, H. S., & Song, M. (2006). Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. Journal of Materials Chemistry, 16, 1843–1851. DOI: 10.1039/b601152g.

    Article  CAS  Google Scholar 

  • Xidas, P. I., & Triantafyllidis, K. S. (2010). Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxyclay nanocomposites. European Polymer Journal, 46, 404–417. DOI: 10.1016/j.eurpolymj.2009.11.004.

    Article  CAS  Google Scholar 

  • Yasmin, A., Abot, J. L., & Daniel, I. M. (2003). Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia, 49, 81–86. DOI: 10.1016/s1359-6462(03)00173-8.

    Article  CAS  Google Scholar 

  • Zhao, J., Morgan, A. B., & Harris, J. D. (2005). Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer, 46, 8641–8660. DOI: 10.1016/j.polymer.2005.04.038.

    Article  CAS  Google Scholar 

  • Zhu, L. X., Papadopoulos, K., & De Kee, D. (2002). Yield stress measurement of silicon nitride suspensions. The Canadian Journal of Chemical Engineering, 80, 1175–1180. DOI: 10.1002/cjce.5450800619.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Benzarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, HT., Benzarti, K. & Duc, M. Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications. Chem. Pap. 66, 519–531 (2012). https://doi.org/10.2478/s11696-011-0118-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0118-y

Keywords

Navigation