Skip to main content
Log in

Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Tannic acid is commonly employed as the main component in culture media for the selection of tannase-producing strains. In biotechnological processes it is the favorite substrate used to induce the tannase enzyme in both solid and submerged culture for microbial and/or enzymatic production of gallic acid. However, the results found in literature are inconsistent notwithstanding the strict control of all parameters that rule the bioprocesses. The present work, for the first time, reveals the importance of differences in the quality and chemical profile of tannic acid from different suppliers and their influence on the fungal and enzymatic hydrolytic pattern obtained when it is used as a substrate. A degree of hydrolysis between 64.7 % and 100 % has been determined in different tannic acid samples. The specific growth rate of 0.712 h−1, 0.792 h−1, 0.477 h−1, 0.536 h−1 for Jalmek®, Faga Lab®, Division Food®, and Riedel de Häen®, respectively, was obtained at the concentration of 80 g L−1 of each of the tannic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001). Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochemistry, 36, 565–570. DOI: 10.1016/s0032-9592(00)00251-x.

    Article  CAS  Google Scholar 

  • Aguilar, C. N., & Gutiérrez-Sánchez, G. (2001). Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International, 7, 373–382. DOI: 10.1106/69m3-b30k-cf7q-rj5g.

    CAS  Google Scholar 

  • Aguilera-Carbo, A., Augur, C., Prado-Barragan, L. A., Favela-Torres, E., & Aguilar, C. N. (2008). Microbial production of ellagic acid and biodegradation of ellagitannins. Applied Microbiology and Biotechnology, 78, 189–199. DOI: 10.1007/s00253-007-1276-2.

    Article  CAS  Google Scholar 

  • Banerjee, D., Mahapatra, S., & Pati, B. R. (2007). Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Research Journal of Microbiology, 2, 462–468. DOI: 10.3923/jm.2007.462.468.

    Article  CAS  Google Scholar 

  • Banerjee, D., & Pati, B. R. (2007). Optimization of tannase production by Aureobasidium pullulans DBS66. Journal of Microbiology and Biotechnology, 17, 985–992.

    Google Scholar 

  • Belmares, R., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., Ramírez Coronel, A., & Aguilar, C. N. (2004). Microbial production of tannase: an enzyme with potential use in food industry. LWT-Food Science and Technology, 37, 857–864. DOI: 10.1016/j.lwt.2004.04.002.

    Article  CAS  Google Scholar 

  • Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins — A current perspective. Biodegradation, 9, 343–357. DOI: 10.1023/a:1008397506963.

    Article  CAS  Google Scholar 

  • Bollen, W. B., & Lu, K. C. (1969). Douglas-fir bark tannin decomposition in two forest soils. Portland, OR, USA: Pacific Northwest Forest and Range Experiment station.

    Google Scholar 

  • Clarke, I. D., Rogers, J. S., Sievers, A. F., & Hopp, H. (1949). Tannin content and other characteristics of native sumac in relation to its value as a commercial source of tannin. Technical Bulletin of the United States Department of Agriculture, 986, 1–76.

    Google Scholar 

  • Cruz-Hernández, M., Contreras, J. C., Lima, N., Teixeira, J., & Aguilar, C. (2009). Production of Aspergillus niger GH1 tannase using solid-state fermentation. Journal of Pure and Applied Microbiology, 3, 21–26.

    Google Scholar 

  • Das Mohapatra, P. K., Mondal, K. C., & Pati, B. R. (2006). Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6. Polish Journal of Microbiology, 55, 297–301.

    Google Scholar 

  • Goldstein, J. L., & Swain, T. (1965). The inhibition of enzymes by tannins. Phytochemistry, 4, 185–192. DOI: 10.1016/s0031- 9422(00)86162-2.

    Article  CAS  Google Scholar 

  • Haslam, E. (1989). Plant polyphenols: vegetable tannins revisited. New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Khanbabaee, K., & van Ree, T. (2001). Tannins: Classification and definition. Natural Product Reports, 18, 641–649. DOI: 10.1039/b101061l.

    Article  CAS  Google Scholar 

  • Lekha, P. K., & Lonsane, B. K. (1997). Production and application of tannin acyl hydrolase: State of the art. Advances in Applied Microbiology, 44, 215–260. DOI: 10.1016/s0065-2164(08)70463-5.

    Article  CAS  Google Scholar 

  • Li, M., Yao, K., He, Q., & Jia, D. (2006). Biodegradation of gallotannins and ellagitannins. Journal Basic Microbiology, 46, 68–84. DOI: 10.1002/jobm.200510600.

    Article  CAS  Google Scholar 

  • Li, W. W., Li, X. D., & Zeng, K. M. (2009). Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochemical Engineering Journal, 43, 142–148. DOI: 10.1016/j.bej.2008.09.010.

    Article  CAS  Google Scholar 

  • Mata-Gómez, M., Rodríguez, L. V., Ramos, E. L., Renovato, J., Cruz-Hernández, M. A., Rodríguez, R., Contreras, J., & Aguilar, C. N. (2009). A novel tannase from the xerophilic fungus Aspergillus niger GH1. Journal of Microbiology and Biotechnology, 19, 987–996. DOI: 10.4014/jmb.1009.09041.

    Article  Google Scholar 

  • Mueller-Harvey, I. (2001). Analysis of hydrolysable tannins. Animal Feed Science and Technology, 91, 3–20. DOI: 10.1016/s0377-8401(01)00227-9.

    Article  CAS  Google Scholar 

  • Salminen, J. P., Ossipov, V., Loponen, J., Haukioja, E., & Pihlaja, K. (1999). Characterization of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography—mass spectrometry. Journal of Chromatography A, 864, 283–291. DOI: 10.1016/s0021-9673(99)01036-5.

    Article  CAS  Google Scholar 

  • Schofield, P., Mbugua, D. M., & Pell, A. N. (2001). Analysis of condensed tannins: a review. Animal Feed Science and Technology, 91, 21–40. DOI: 10.1016/s0377-8401(01)00228-0.

    Article  CAS  Google Scholar 

  • Sharma, S., Bhat, T. K., & Dawra, R. K. (2000). A spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry, 279, 85–89. DOI: 10.1006/abio.1999.4405.

    Article  CAS  Google Scholar 

  • Swain, T., & Bate-Smith, E. C. (1962). Flavonoid compounds. In H. S. Mason, & A. M. Florkin (Eds.), Comparative biochemistry (pp. 755–809). New York, NY, USA: Academic Press.

    Google Scholar 

  • Van Diepeningen, A. D., Debets, A. J. M., Varga, J., Van Der Gaag, M., Swart, K., & Hoekstra, R. F. (2004). Efficient degradation of tannic acid by black Aspergillus species. Mycological Reserch, 108, 919–925. DOI: 10.1017/s0953756204000747.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal Noé Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chávez-González, M.L., Contreras-Esquivel, J.C., Prado-Barragán, L.A. et al. Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality. Chem. Pap. 66, 171–177 (2012). https://doi.org/10.2478/s11696-011-0112-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0112-4

Keywords

Navigation