Skip to main content
Log in

Chemical engineering approach to regenerative medicine

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The intrinsically multi-factorial pathological trend of spinal cord injury is probably the most important reason behind the absence of efficient therapeutic strategies. Therefore, recent studies suggest the use of new tools combining the delivery of both cells and drugs. Systems which are able to perform multiple controlled delivery of different therapeutic agents have gained particularly strong interest. Hence, in order to avoid trial and error approaches, several studies were performed following the classic chemical engineering multiscale approach: tuning microchemistry to manipulate macro properties in order to satisfy specific medical needs as injectability, low stress on target tissues, ability to retain liquids, capability of carrying living cells, and possibility to control the delivery of drugs. In this framework we focused on injectable agarose-carbomer based hydrogels applying he results of our studies performed in the past two years: in vitro biocompatibility, physical chemical studies, drug delivery transport phenomena investigation, and in vivo biocompatibility in uninjured Brainbow mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering: Part B, 16, 371–383. DOI: 10.1089/ten.teb.2009.0639.

    Article  CAS  Google Scholar 

  • Atala, A., Lanza, R., Thomson, J. A., & Nerem, R. M. (2008). Principles of regenerative medicine. Burlington, MA, USA: Elsevier.

    Google Scholar 

  • Bacaj, T., Tevlin, M., Lu, Y., & Shaham, S. (2008). Glia are essential for sensory organ function in C. elegans. Science, 322, 744–747. DOI: 10.1126/science.1163074.

    Article  CAS  Google Scholar 

  • Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y., Kim, H., Lapitsky, Y., & Shoichet, M. S. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213. DOI: 10.1016/j.jconrel.2009.05.009.

    Article  CAS  Google Scholar 

  • Baumann, M. D., Kang, C. E., Tator, C. H., & Shoichet, M. S. (2010). Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials, 31, 7631–7639. DOI: 10.1016/j.biomaterials.2010.07.004.

    Article  CAS  Google Scholar 

  • Bjugstad, K. B., Lampe, K., Kern, D. S., & Mahoney, M. (2010). Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: An analysis of the glial response across space and time. Journal of Biomedical Materials Research Part A, 95A, 79–91. DOI: 10.1002/jbm.a.32809.

    Article  CAS  Google Scholar 

  • Bradbury, E. J., & Carter, L. M. (2011). Manipulating the glial scar: Chondroitinase ABC as a therapy for spinal cord injury. Brain Research Bulletin, 84, 306–316. DOI: 10.1016/j.brainresbull.2010.06.015.

    Article  CAS  Google Scholar 

  • Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., & Forsberg-Nilsson, K. (2007). Enhanced neuronal differentiation in a three-dimensional collagenhyaluronan matrix. Journal of Neuroscience Research, 85, 2138–2146. DOI: 10.1002/jnr.21358.

    Article  Google Scholar 

  • Calegari, F., Coco, S., Taverna, E., Bassetti, M., Verderio, C., Corradi, N., Matteoli, M., & Rosa, P. (1999). A regulated secretory pathway in cultured hippocampal astrocytes. The Journal of Biological Chemistry, 274, 22539–22547. DOI: 10.1074/jbc.274.32.22539.

    Article  CAS  Google Scholar 

  • Cao, K., Huang, L., Liu, J., An, H., Shu, Y., & Han, Z. (2010). Inhibitory effects of high-dose methylprednisolone on bacterial translocation from gut and endotoxin re lease following acute spinal cord injury-induced paraplegia in rats. Neural Regeneration Research, 5, 456–460. DOI: 10.3969/j.issn.1673-5374.2010.06.009.

    CAS  Google Scholar 

  • Casalini, T., Salvalaglio, M., Perale, G., Masi, M., & Cavallotti, C. (2011). Diffusion and aggregation of sodium fluorescein in aqueous solutions. Journal of Physical Chemistry B, in press. DOI: 10.1021/jp207459k.

  • Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752–758. DOI: 10.1038/nn1472.

    Article  CAS  Google Scholar 

  • de Jong, S. J., van Eerdenbrugh, B., van Nostrum, C. F., Kettenes-van de Bosch, J. J., & Hennink, W. E. (2001). Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. Journal of Controlled Release, 71, 261–275. DOI: 10.1016/s0168-3659(01)00228-0.

    Article  Google Scholar 

  • Dumitriu, S. (2002). Polymeric biomaterials. New York, NY: Marcel Dekker.

    Google Scholar 

  • European Commision (2009). Commission regulation (EC) No 668/2009 of 24 July 2009. Official Journal of the European Union, L 194, 7–10.

    Google Scholar 

  • Fawcett, J.W., & Asher, R. A. (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49, 377–391. DOI: 10.1016/s0361-9230(99)00072-6.

    Article  CAS  Google Scholar 

  • Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L., & Nealey, P. F. (1999). Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 20, 573–588. DOI: 10.1016/s0142-9612(98)00209-9.

    Article  CAS  Google Scholar 

  • Flory, P. J. (1953). Principles of polymer chemistry. New York, NY, USA Cornell Univeristy Press.

    Google Scholar 

  • Fournier, E., Passirani, C., Montero-Menei, C. N., & Benoit, J. P. (2003). Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials, 24, 3311–3331. DOI: 10.1016/s0142-9612(03)00161-3.

    Article  CAS  Google Scholar 

  • Hejčl, A., Lesny, P., Přadný, M., Šedý, J., Zámečník, J., Jendelová, P., Michálek, J., & Syková, E. (2009). Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. Journal of Material Science: Materials in Medicine, 20, 1571–1577. DOI: 10.1007/s10856-009-3714-4.

    Article  Google Scholar 

  • Hejčl, A., Šedý, J., Kapcalová, M., Toro, D. A., Amemori, T., Lesny, P., Likavčanová-Mašínová, K., Krumbholcová, E., Přándý, M., Michálek, J., Burian, M., Hájek, M., Jendelová, P., & Syková, E. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells and Development, 19, 1535–1546. DOI: 10.1089/scd.2009.0378.

    Article  Google Scholar 

  • Horner, P. J., & Gage, F. H. (2000). Regenerating the damaged central nervous system. Nature, 407, 963–970. DOI: 10.1038/35039559.

    Article  CAS  Google Scholar 

  • Huglin, M. B., Rehab, M. M. A. M., & Zakaria, M. B. (1986). Thermodynamic interactions in copolymeric hydrogels. Macromolecules, 19, 2986–2991. DOI: 10.1021/ma0016 6a019.

    Article  CAS  Google Scholar 

  • Kim, Y. T., Caldwell, J. M., & Bellamkonda, R. V. (2009). Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials, 30, 2582–2590. DOI: 10.1016/j.biomaterials.2008.12.077.

    Article  CAS  Google Scholar 

  • Kubinová, Š., & Syková, E. (2010). Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine, 5, 99–108. DOI: 10.2217/nnm.09.93.

    Article  Google Scholar 

  • Kwon, B. K., Sekhon, L. H., & Fehlings, M. G. (2010). Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine, 35, S263–S270. DOI: 10.1097/brs.0b013e3181f3286d.

    Article  Google Scholar 

  • Langer, R. (2009). Perspectives and challenges in tissue engineering and regenerative medicine. Advanced Materials, 21, 3235–3236. DOI: 10.1002/adma.200902589.

    Article  CAS  Google Scholar 

  • Lanza, R. P., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering. Burlington, MA, USA: Elsevier.

    Google Scholar 

  • Leung, B. K., Biran, R., Underwood, C. J., & Tresco, P. A. (2008). Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials, 29, 3289–3297. DOI: 10.1016/j.biomaterials.2008.03.045.

    Article  CAS  Google Scholar 

  • Livet, J., Weissman, T. A., Kang, H., Draft, R.W., Lu, J., Bennis, R. A., Sanes, J. R., & Lichtman, J.W. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450, 56–62. DOI: 10.1038/nature06293.

    Article  CAS  Google Scholar 

  • Luo, Y., & Shoichet, M. S. (2004). A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials, 3, 249–253. DOI: 10.1038/nmat1092.

    Article  CAS  Google Scholar 

  • McDonald, J. W., Gottlieb, D. I., & Choi, D. W. (2000). Reply to “What is a functional recovery after spinal cord injury?”. Nature Medicine, 6, 358. DOI: 10.1038/74759.

    Article  CAS  Google Scholar 

  • Nakamatsu, J., Torres, F. G., Troncoso, O. P., Yuan, M. L., & Boccaccini, A. R. (2006). Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules, 7, 3345–3355. DOI: 10.1021/bm0605311.

    Article  CAS  Google Scholar 

  • Nisbet, D. R., Crompton, K. E., Horne, M. K., Finkelstein, D. I., & Forsythe, J. S. (2008). Neural tissue engineering of the CNS using hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B, 251–263. DOI: 10.1002/jbm.b.31000.

    Article  CAS  Google Scholar 

  • Novikova, L. N., Mosahebi, A., Wiberg, M., Terenghi, G., Kellerth, J. O., & Novikov, L. N. (2006). Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Journal of Biomedical Materials Research Part A, 77A, 242–252. DOI: 10.1002/jbm.A.30603.

    Article  CAS  Google Scholar 

  • Perale, G., Giordano, C., Bianco, F., Rossi, F., Tunesi, M., Daniele, F., Crivelli, F., Matteoli, M., & Masi, M. (2011a). Hydrogel for cell housing in the brain and in the spinal cord. International Journal of Artificial Organs, 34, 295–303. DOI: 10.5301/ijao.2011.6488.

    Article  CAS  Google Scholar 

  • Perale, G., Rossi, F., Santoro, M., Marchetti, P., Mele, A., Castiglione, F., Raffa, E., & Masi, M. (2011b). Drug release from hydrogel: A new understanding of transport phenomena. Journal of Biomedical Nanotechnology, 7, 476–481. DOI: 10.1166/jbn.2011.1302.

    Article  CAS  Google Scholar 

  • Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., & Veglianese, P. (2011c). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345. DOI: 10.1021/cn200030w.

    Article  CAS  Google Scholar 

  • Perale, G., Veglianese, P., Rossi, F., Peviani, M., Santoro, M., Llupi, D., Micotti, E., Forloni, G., & Masi, M. (2011d). In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Materials Letters, 65, 1688–1692. DOI: 10.1016/j.matlet.2011.02.036.

    Article  CAS  Google Scholar 

  • Prang, P., Müller, R., Eljaouhari, A., Heckmann, K., Kunz, W., Weber, T., Faber, C., Vroemen, M., Bogdahn, U., & Weidner, N. (2006). The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials, 27, 3560–3569. DOI: 10.1016/j.biomaterials.2006.01.053.

    CAS  Google Scholar 

  • Rossi, F., Casalini, T., Santoro, M., Mele, A., & Perale, G. (2011a). Methylprednisolone release from agar-Carbomerbased hydrogel: a promising tool for local drug delivery. Chemical Papers, 65, 903–908. DOI: 10.2478/s11696-011-0059-5.

    Article  CAS  Google Scholar 

  • Rossi, F., Chatzistavrou, X., Perale, G., & Boccaccini, A. R. (2012). Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering appliactions. Journal of Applied Polymer Science, 123, 398–408. DOI: 10.1002/app.34488.

    Article  CAS  Google Scholar 

  • Rossi, F., Perale, G., & Masi, M. (2010). Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chemical Papers, 64, 573–578. DOI: 10.2478/s11696-010-0052-4.

    Article  CAS  Google Scholar 

  • Rossi, F., Perale, G., Storti, G., & Masi, M. (2011b). A library of tunable agarose carbomer-based hydrogels for tissue engineering applications: The role of cross-linkers. Journal of Applied Polymer Science, in press. DOI: 10.1002/app.34731.

  • Sakurada, K., McDonald, F. M., & Shimada, F. (2008). Regenerative medicine and stem cell based drug discovery. Angewandte Chemie International Edition, 47, 5718–5738. DOI: 10.1002/anie.200700724.

    Article  CAS  Google Scholar 

  • Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394.

    Article  CAS  Google Scholar 

  • Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901 530r.

    Article  CAS  Google Scholar 

  • Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106.

    Article  CAS  Google Scholar 

  • Stella, V. J., Lee, H. K., & Thompson, D. O. (1995). The effect of SBE4-β-CD on i.v. methylprednisolone pharmacokinetics in rats: Comparison to a co-solvent solution and two water-soluble prodrugs. International Journal of Pharmaceutics, 120, 189–195. DOI: 10.1016/0378-5173(94)00404-S.

    Article  CAS  Google Scholar 

  • Steward, O., Schauwecker, P. E., Guth, L., Zhang, Z. Y., Fujiki, M., Inman, D., Wrathall, J., Kempermann, G., Gage, F. H., Saatman, K. E., Raghupathi, R., & McIntosh, T. (1999). Genetic approaches to neurotrauma research: Opportunities and potential pitfalls of murine models. Experimental Neurology, 157, 19–42. DOI: 10.1006/exnr.1999.7040.

    Article  CAS  Google Scholar 

  • Tan, H. P., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30, 2499–2506. DOI: 10.1016/j.biomaterials.2008.12.080.

    Article  CAS  Google Scholar 

  • van de Manakker, F., Vermonden, T., el Morabit, N., van Nostrum, C. F., & Hennink, W. E. (2008). Rheological behavior of self-assembling PEG-β-cyclodextrin/PEGcholesterol hydrogels. Langmuir, 24, 12559–12567. DOI: 10.1021/la8023748.

    Article  Google Scholar 

  • van den Berg, M. E. L., Castellote, J. M., de Pedro-Cuesta, J., & Mahillo-Fernandez, I. (2010a). Survival after spinal cord injury: A systematic review. Journal of Neurotrauma, 27, 1517–1528. DOI: 10.1089/neu.2009.1138.

    Article  Google Scholar 

  • van den Berg, M. E. L., Castellote, J. M., Mahillo-Fernandez, I., & de Pedro-Cuesta, J. (2010b). Incidence of spinal cord injury worldwide: A systematic review. Neuroepidemiology, 34, 184–192. DOI: 10.1159/000279335.

    Article  Google Scholar 

  • Varghese, O. P., Sun, W., Hilborn, J., & Ossipov, D. A. (2009). In situ cross-linkable high molecular weight hyaluronanbisphosphonate conjugate for localized delivery and cellspecific targeting: A hydrogel linked prodrug approach. Journal of the American Chemical Society, 131, 8781–8784. DOI: 10.1021/ja902857b.

    Article  CAS  Google Scholar 

  • Willerth, S. M., & Sakiyama-Elbert, S. E. (2007). Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 59, 325–338. DOI: 10.1016/j.addr.2007.03.014.

    Article  CAS  Google Scholar 

  • Woerly, S., Pinet, E., de Robertis, L., Van Diep, D., & Bousmina, M. (2001). Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGelTM). Biomaterials, 22, 1095–1111. DOI: 10.1016/s0142-9612(00)00354-9.

    Article  CAS  Google Scholar 

  • Zhong, Y., & Bellamkonda, R. V. (2008). Biomaterials for the central nervous system. Journal of the Royal Society Interface, 5, 957–975. DOI: 10.1098/rsif.2008.0071.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perale, G., Rossi, F., Veglianese, P. et al. Chemical engineering approach to regenerative medicine. Chem. Pap. 66, 108–119 (2012). https://doi.org/10.2478/s11696-011-0111-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0111-5

Keywords

Navigation