Skip to main content
Log in

Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

We performed the Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water to study the reaction under high temperature conditions. The final product thus obtained was primarily 1-cyclohexen-1-ylethanone which was identified by GC-MS. The influences of reaction time, temperature, and initial reactant-to-water ratio on the yield of 1-cyclohexen-1-ylethanone were examined. The yield of 1-cyclohexen-1-ylethanone was 49 % in pure water at 260°C for a reaction time of 60 min. However, when additives such as ZnSO4, FeCl3, and NaHSO4, respectively, were introduced to the water to investigate the effect of salts on the Rupe rearrangement reaction, the yield increased markedly to as much as 88 % in 5 mole % NaHSO4 aqueous solution under the same conditions. The catalytic ability of the additives decreased in order: NaHSO4, FeCl3, ZnSO4. On the basis of these results, a possible reaction mechanism of the Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An, J., Bagnell, L., Cablewski, T., Strauss, C. R., & Trainor, R W. (1997). Applications of high-temperature aqueous media for synthetic organic reactions. Journal of Organic Chemistry, 62, 2505–2511. DOI: 10.1021/jo962115k.

    Article  CAS  Google Scholar 

  • Anastas, P. T., & Warner, J. C. (1998). Green chemistry: Theory and practice. London, UK: Oxford University Press.

    Google Scholar 

  • Ansell, M. F., Hancock, J. W., & Hickinbottom, W. J. (1956) The synthesis and reactions of branched-chain hydrocarbons Part X. The rearrangement of α-ethynyl alcohols to unsaturated carbonyl compounds. Journal of the Chemical Society, 192, 911–917. DOI: 10.1039/JR9560000911.

    Google Scholar 

  • Connolly, J. F. (1966). Solubility of hydrocarbons in water near the critical solution temperatures. Journal of Chemical & Engineering Data, 11, 13–16. DOI: 10.1021/je60028a003.

    Article  CAS  Google Scholar 

  • Duan, P. G., Li, S., Yang, Y., Wang, Z. Z., & Dai, L. Y. (2009) Green medium for the hydrolysis of 5-cyanovaleramide Chemical Engineering & Technology, 32, 771–777. DOI: 10.1002/ceat.200800607.

    CAS  Google Scholar 

  • Fraga-Dubreuil, J., & Poliakoff, M. (2006). Organic reactions in high-temperature and supercritical water. Pure and Applied Chemistry, 78, 1971–1982. DOI: 10.1351/pac200678111971.

    Article  CAS  Google Scholar 

  • Fukuda, Y., Shiragami, H., Utimoto, K., & Nozaki, H. (1991) Synthesis of substituted furans by palladium-catalyzed cyclization of acetylenic ketones. Journal of Organic Chemistry, 56, 5816–5819. DOI: 10.1021/jo00020a024.

    Article  CAS  Google Scholar 

  • Fukuda, Y., & Utimoto, K. (1991). Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. Journal of Organic Chemistry, 56, 3729–3731. DOI: 10.1021/jo00011a058.

    Article  CAS  Google Scholar 

  • Hassner, A., & Stumer, C. (1994). Organic syntheses based on name reactions and unnamed reactions. Oxford, UK: Pergamon.

    Google Scholar 

  • Jerome, K. S., & Parsons, E. J. (1993). Metal-catalyzed alkyne cyclotrimerizations in supercritical water. Organometallics, 12, 2991–2993. DOI: 10.1021/om00032a022.

    Article  CAS  Google Scholar 

  • Katritzky, A. R., Allin, S. M., & Siskin, M. (1996). Aquathermolysis: Reactions of organic compounds with superheated water. Accounts of Chemical Research, 29, 399–406. DOI: 10.1021/ar950144w.

    Article  CAS  Google Scholar 

  • Katritzky, A. R., Luxem, F. J., & Siskin, M. (1990). Aqueous high-temperature chemistry of carbo- and heterocycles. 6 Monosubstituted benzenes with two carbon atom side chains unsubstituted or oxygenated at the α-position. Energy Fuels, 4, 518–524. DOI: 10.1021/ef00023a020.

    Article  CAS  Google Scholar 

  • Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant. Properties and synthesis reactions. Journal of Supercritical Fluids, 39, 362–380. DOI: 10.1016/j.supflu.2006.03.016.

    Article  CAS  Google Scholar 

  • Li, S., Chang, Y. J., Wang, Y., & Dai, L. Y. (2011). Research on hydration of phenylacetylene assisted with additives in nearcritical water. Chinese Chemical Letters, 22, 393–396. DOI: 10.1016/j.cclet.2010.11.003.

    Article  CAS  Google Scholar 

  • Marshall, W. L., & Franck, E. U. (1981). Ion product of water substance, 0–1000°C, 1–10,000 bars. New international formulation and its background. Journal of Physical and Chemical Reference Data, 10, 295–304. DOI: 10.1063/1.555643.

    Article  CAS  Google Scholar 

  • Parham, W. E., Wheeler, E. L., Dodson, R. M., & Fenton, S. W. (1954). The Rupe rearrangement of 2,6-dimethyl-2-carbethoxy-l-(phenylethynyl)-cyclohexanol (II) and 2,6-dimethyl-2-carbetoxy-l-(3-isopropylphenylethynyl)-cyclohexanol(III). Journal of the American Chemical Society, 76, 5380–5385. DOI: 10.1021/ja01650a038.

    Article  CAS  Google Scholar 

  • Parsons, E. J. (1996). Organic reactions in very hot water. ChemInform, 26, 30–34. DOI: 10.1002/chin.199643280.

    CAS  Google Scholar 

  • Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chemical Reviews, 99, 603–622. DOI: 10.1021/cr9700989.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1995). Evidence for organic synthesis in high temperature aqueous media — facts and prognosis. Origins of Life and Evolution of Biospheres, 25, 119–140. DOI: 10.1007/BF01581578.

    Article  CAS  Google Scholar 

  • Siskin, M., Brons, G., Vaughn, S. N., Katritzky, A. R., & Balasubramanian, M. (1990). Aqueous organic chemistry. 3 Aquathermolysis: reactivity of ethers and esters. Energy Fuels, 4, 488–492. DOI: 10.1021/ef00023a014.

    Article  CAS  Google Scholar 

  • Smissmann, E. E., Johnsen, R. H., Carlson, A. W., & Aycock, B. F. (1956). The acid-catalyzed rearrangement of phenylethynylcarbinols. Journal of the American Chemical Society, 78, 3395–3400. DOI: 10.1021/ja01595a036.

    Article  Google Scholar 

  • Swaminathan, S., & Narayanan, K. V. (1971). Rupe and Meyer-Schuster rearrangements. Chemical Reviews, 71, 429–438. DOI: 10.1021/cr60273a001.

    Article  CAS  Google Scholar 

  • Torry, L. A., Kaminsky, R., Klein, M. T., & Klotz, M. R (1992). The effect of salts on hydrolysis in supercritical and near-critical water: Reactivity and availability. The Journal of Supercritical Fluids, 5, 163–168. DOI: 10.1016/0896-8446(92)90003-3.

    Article  CAS  Google Scholar 

  • Watanabe, M., Sato, T., Inomata, H., Smith, R. L., Jr., Arai, K., Kruse, A., & Dinjus, E. (2004). Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104, 5803–5822. DOI: 10.1021/cr020415y.

    Article  CAS  Google Scholar 

  • Weingärtner, H., & Franck, E. U. (2005). Supercritical water as a soluvent. Angewandte Chemie International Edition, 44, 2672–2692. DOI: 10.1002/anie.200462468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yi Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YJ., Wang, ZZ., Luo, LG. et al. Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chem. Pap. 66, 33–38 (2012). https://doi.org/10.2478/s11696-011-0093-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0093-3

Keywords

Navigation