Skip to main content
Log in

Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A rapid kinetic method for the simultaneous determination of levodopa, dopamine, and dobutamine was examined and developed. It was based on a consecutive reaction of a reduction of Cu(II) to Cu(I) by catecholamines, followed by the complexation of Cu(I) with neocuproine to form a yellow product in an acetic acid-acetate buffer. Spectrophotometric data were recorded at 453 nm (wavelength at the yellow complex absorption maximum) for 300 s. Linear calibrations were obtained in the concentration ranges of (0.08–1.44) × 10−5 mol L−1, (0.08–1.44) × 10−5 mol L−1, and (0.16–1.44) × 10−5 mol L−1 for levodopa, dopamine, and dobutamine, respectively. A variety of multivariate calibration models was developed for simultaneous analysis of the three analytes; while most models produced satisfactory prediction results for synthetic samples, the hybrid linear analysis method was arguably the best-performing (relative prediction error, RPET = 6.6 %). The proposed method was applied to an analysis of spiked rabbit serum samples and the results showed good agreement with the high performance liquid chromatography measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bahram, M., & Afkhami, A. (2008). Recent applications of kinetic methods in multi-component analysis. Journal of Iranian Chemical Society, 5, 352–366.

    CAS  Google Scholar 

  • Berger, A. J., Koo, T.-W., Itzkan, I., & Feld, M. S. (1998). An enhanced algorithm for linear multivariate calibration. Analytical Chemistry, 70, 623–627. DOI: 10.1021/ac970721p.

    Article  CAS  Google Scholar 

  • Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Chichester, UK: Wiley.

    Google Scholar 

  • Chernyshov, D. V., Shvedene, N. V., & Antipova, E. R. (2008). Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines. Analytica Chimica Acta, 621, 178–184. DOI: 10.1016/j.aca.2008.05.042.

    Article  CAS  Google Scholar 

  • Fang, H., Li, H., Li, Y., Zhao, J., & Xu, J. (2009). Simultaneous spectrophotometric determination of three tolualdehyde isomers by artificial neural networks and its comparison with partial least squares. Chinese Journal of Chemistry, 27, 546–550. DOI: 10.1002/cjoc.200990089.

    Article  CAS  Google Scholar 

  • Goicoechea, H. C., & Olivieri, A. C. (1999). Determination of bromhexine in cough-cold syrups by absorption spectrophotometry and multivariate calibration using partial leastsquares and hybrid linear analyses. Application of a novel method of wavelength selection. Talanta, 49, 793–800. DOI: 10.1016/S0039-9140(99)00080-6.

    Article  CAS  Google Scholar 

  • Gottwald, M. D., & Aminoff, M. J. (2011). Therapies for dopaminergic-induced dyskinesias in parkinson disease. Annals of Neurology, 69, 919–927. DOI: 10.1002/ana.22423.

    Article  CAS  Google Scholar 

  • Haaland, D. M., & Thomas, E. V. (1988). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60, 1193–1202. DOI: 10.1021/ac00162a020.

    Article  CAS  Google Scholar 

  • Hasani, M., Yaghoubi, L., & Abdollahi, H. (2007). A kinetic spectrophotometric method for simultaneous determination of glycine and lysine by artificial neural networks. Analytical Biochemistry, 365, 74–81. DOI: 10.1016/j.ab.2007.02.010.

    Article  CAS  Google Scholar 

  • Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective. Trends in Neuroscience, 30(5), 188–193. DOI: 10.1016/j.tins.2007.03.002.

    Article  CAS  Google Scholar 

  • Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiological Reviews, 89, 535–606. DOI: 10.1152/physrev.00042.2006.

    Article  CAS  Google Scholar 

  • Mohamed, G. G., Nour-El-Dien, F. A., & El-Nahas, R. G. (2009). Spectrophotometric and standard addition methods for quantitative determination of dopamine hydrochloride and levodopa in tablets and ampoules. Afinidad, 66, 243–251.

    CAS  Google Scholar 

  • Mulugeta, M., Wibetoe, G., Engelsen, C. J., & Asfaw, A. (2009). Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material. Analytical and Bioanalytical Chemistry, 393, 1015–1024. DOI: 10.1007/s00216-008-2494-x.

    Article  CAS  Google Scholar 

  • National standard of the People’s Republic of China (2007). Determination of dopamine hydrochloride in feeds-high performance liquid chromatography. GB/T 21036-2007. Beijing, China.

  • Nemeček, P., Ďurčeková, T., Mocák, J., & Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. Chemical Papers, 63, 84–91. DOI: 10.2478/s11696-008-0089-9.

    Article  Google Scholar 

  • Ni, Y., Huang, C., & Kokot, S. (2004). Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides. Chemometrics and Intelligent Laboratory Systems, 71, 177–193. DOI: 10.1016/j.chemolab.2004.02.003.

    Article  CAS  Google Scholar 

  • Ni, Y., & Wang, Y. (2007). Application of chemometrics methods to the simultaneous kinetic spectrophotometric determination of iodate and periodate based on consecutive reactions. Microchemical Journal, 86, 216–226. DOI: 10.1016/j.microc.2007.03.008.

    Article  CAS  Google Scholar 

  • Nour El-Dien, F. A., Frag, E. Y. A., & Mohamed, G. G. (2010). Coupling reaction and complex formation for the spectrophotometric determination of physiologically active catecholamines in bulk, pharmaceutical preparations and urine samples of schizophrenic patients. Drug Testing and Analysis, 2, 234–242. DOI: 10.1002/dta.123.

    Article  CAS  Google Scholar 

  • Parissis, J. T., Rafouli-Stergiou P., Stasinos, V., Psarogiannakopoulos, P., & Mebazaa, A. (2010). Inotropes in cardiac patients: update 2011. Current Opinion in Critical Care, 16, 432–441. DOI: 10.1097/MCC.0b013e32833e10fb.

    Article  Google Scholar 

  • Park, H., & Paeng, I. R. (2011). Development of direct competitive enzyme-linked aptamer assay for determination of dopamine in serum. Analytica Chimica Acta, 685, 65–73. DOI: 10.1016/j.aca.2010.11.010.

    Article  CAS  Google Scholar 

  • Rezaei, B., Khayamian, T., & Mokhtari, A. (2009). Simultaneous determination of codeine and noscapine by flow-injection chemiluminescence method using N-PLS regression. Journal of Pharmaceutical and Biomedical Analysis, 49, 234–239. DOI: 10.1016/j.jpba.2008.10.036.

    Article  CAS  Google Scholar 

  • Safavi, A., & Tohidi, M. (2007). Simultaneous kinetic determination of levodopa and carbidopa by H-point standard addition method. Journal of Pharmaceutical and Biomedical Analysis, 44, 313–318. DOI: 10.1016/j.jpba.2007.02.020.

    Article  CAS  Google Scholar 

  • Samadi-Maybodi, A., & Darzi, S. K. H. N. (2008). Simultaneous determination of vitamin B12 and its derivatives using some of multivariate calibration 1 (MVC1) techniques. Spectrochimica Acta Part A: Molecular and Biomolecular spectroscopy, 70, 1167–1172. DOI: 10.1016/j.saa.2007.10.037.

    Article  Google Scholar 

  • Shaikh, S. M. T., Manjunatha, D. H., Harikrishna, K., Ramesh, K. C., Sudhir Kumar, R., & Seetharamappa, J. (2008). Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations. Journal of Analytical Chemistry, 6, 637–642. DOI: 10.1134/S106193480807006X.

    Article  Google Scholar 

  • Shin, D. D., Brandimarte, F., De Luca, L., Sabbah, H. N., Fonarow, G. C., Filippatos, G., Komajda, M., & Gheorghiade, M. (2007). Review of current and investigational pharmacologic agents for acute heart failure syndromes. The American Journal of Cardiology, 99(2), S4–S23. DOI: 10.1016/j.amjcard.2006.11.025.

    Article  Google Scholar 

  • Shore, P. A., & Olin, J. S. (1958). Identification and chemical assay of norepinephrine in brain and other tissues. Journal of Pharmacology and Experimental Therapeutics, 122, 295–300.

    CAS  Google Scholar 

  • Thanvi, B. R., & Lo, T. C. N. (2004). Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgraduate Medical Journal, 80, 452–458. DOI: 10.1136/pgmj.2003.013912.

    Article  CAS  Google Scholar 

  • Tütem, E., Apak, R., & Baykut, F. (1991). Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II). Analyst, 116, 89–94. DOI: 10.1039/an9911600089.

    Article  Google Scholar 

  • Workman, J., & Mark, H. (2007). Limitations in analytical accuracy, Part I: Horwitz’s trumpet. Spectroscopy, 22(2), 18–24.

    Google Scholar 

  • Xu, L., & Schechter, I. (1997). A calibration method free of optimism factor number selection for automated multivariate analysis. Experimental and theoretical study. Analytical Chemistry, 69, 3722–3730. DOI: 10.1021/ac970402y.

    Article  CAS  Google Scholar 

  • Yu, C., Tang, Y., Han, X., & Zheng, X. (2006). Sensitive assay for catecholamines in pharmaceutical samples and blood plasma using flow injection chemiluminescence analysis. Analytical Sciences, 22, 25–28. DOI: 10.2116/analsci.22.25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongnian Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Gu, Y. & Kokot, S. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations. Chem. Pap. 65, 782–791 (2011). https://doi.org/10.2478/s11696-011-0090-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0090-6

Keywords

Navigation