Skip to main content
Log in

Ethanol production in a bioreactor with an integrated membrane distillation module

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Astract

Ethanol production in a bioreactor with integrated membrane distillation (MD) module has been investigated. A hydrophobic capillary polypropylene membrane (Accurel PP V8/2 HF), with an external/internal diameter ratio, d out/d in = 8.6 mm/5.5 mm and pore size 0.2 μm, was used in these studies. The products (mainly ethanol and acetic acid) formed during the fermentation of sugar with Saccharomyces cerevisiae inhibited the process. These products were selectively removed from the fermentation broth by the MD process, which increased the efficiency of the conversion of sugar to alcohol from 0.45 g to 0.5 g EtOH per g of fermented sucrose. The bioreactor efficiency also increased by almost 30 %. Separation of alcohol by the MD generates a higher yield of ethanol in the permeate than in the broth. The enrichment coefficient amounted to 4-8, and depended on the ethanol concentration in the broth. The separated solutions did not wet the membrane in use for 2500 h of the MD experiments and the retention of inorganic solutes was close to 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, F.W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26, 89–105. DOI: 10.1016/j.biotech adv.2007.09.002.

    Article  CAS  Google Scholar 

  • Barancewicz, M., Sasim, M., & Gryta, M. (2009). Zastosowanie chromatografii jonowej do badania przebiegu fermentacji. Prace i Studia, 77, 89–101.

    Google Scholar 

  • Cardona, C. A., & Sanchéz, Ó. J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98, 2415–2457. DOI: 10.1016/j.bior tech.2007.01.002.

    Article  CAS  Google Scholar 

  • Choi, G.-W., Kang, H.-W., & Moon, S.-K. (2009). Repeatedbatch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Applied Microbiology and Biotechnology, 84, 261–269. DOI: 10.1007/s00253-009-1946-3.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18. DOI: 10.1016/j.pecs.2006.06.001.

    Article  CAS  Google Scholar 

  • Escobar, J. M., Rane, K. D., & Cheryan, M. (2001). Ethanol production in a membrane bioreactor. Applied Biochemistry and Biotechnology, 91–93, 283–296. DOI: 10.1385/ABAB:91-93:1-9:283.

    Article  Google Scholar 

  • Gryta, M. (2007). Effect of iron oxides scaling on the MD process performance. Desalination, 216, 88–102. DOI: 10.1016/j.desal.2007.01.002.

    Article  CAS  Google Scholar 

  • Gryta, M. (2001). The fermentation process integrated with membrane distillation. Separation and Purification Technology, 24, 283–296. DOI: 10.1016/S1383-5866(01)00132-0.

    Article  CAS  Google Scholar 

  • Gryta, M., & Barancewicz, M. (2010). Influence of morphology of PVDF capillary membranes on the performance of direct contact membrane distillation. Journal of Membrane Science, 358, 158–167. DOI: 10.1016/j.memsci.2010.04.044.

    Article  CAS  Google Scholar 

  • Gryta, M., Morawski, A. W., & Tomaszewska, M. (2000). Ethanol production in membrane distillation bioreactor. Catalysis Today, 56, 159–165. DOI: 10.1016/S0920-5861(99)00272-2.

    Article  CAS  Google Scholar 

  • Gyamerah, M., & Glover, J. (1996). Production of ethanol by continuous fermentation and liquid-liquid extraction. Journal of Chemical Technology and Biotechnology, 66, 145–152. DOI: 10.1002/(SICI)1097-4660(199606)66:2<145::AIDJCTB484>3.0.CO;2-2.

    Article  CAS  Google Scholar 

  • Kargupta, K., Datta, S., & Sanyal, S. K. (1998). Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation. Biochemical Engineering Journal, 1, 31–37. DOI: 10.1016/S1369-703X(97)00006-5.

    Article  CAS  Google Scholar 

  • Kaseno, Miyazawa, I., & Kokugan, T. (1998). Effect of product removal by a pervaporation on ethanol fermentation. Journal of Fermentation and Bioengineering, 86, 488–493. DOI: 10.1016/S0922-338X(98)80157-8.

    Article  CAS  Google Scholar 

  • Maiorella, B. L., Blanch, H. W., & Wilke, C. R. (1984). Economic evaluation of alternative ethanol fermentation processes. Biotechnology and Bioengineering, 26, 1003–1025. DOI: 10.1002/bit.260260902.

    Article  CAS  Google Scholar 

  • Park, B. G., Lee, W. G., Chang, Y. K., & Chang, H. N. (1999). Long-term operation of continuous high cell density culture of Saccharomyces cerevisiae with membrane filtration and on-line cell concentration monitoring. Bioprocess Engineering, 21, 97–100. DOI: 10.1007/PL00009070.

    CAS  Google Scholar 

  • Udriot, H., Ampuero, S., Marison, I. W., & von Stockar, U. (1989). Extractive fermentation of ethanol using membrane distillation. Biotechnology Letters, 11, 509–514. DOI: 10.1007/BF01026651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Gryta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barancewicz, M., Gryta, M. Ethanol production in a bioreactor with an integrated membrane distillation module. Chem. Pap. 66, 85–91 (2012). https://doi.org/10.2478/s11696-011-0088-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0088-0

Keywords

Navigation