Skip to main content
Log in

Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Three series of heteroaryl chalcones, (E)-1-(2-pyridyl)-3-(X)prop-2-en-1-one (Ia-Ic), (E)-1-(2-thienyl)-3-(X)prop-2-en-1-one (IIa-IIc), and (E)-1-(2-furyl)-3-(X)prop-2-en-1-one (IIIa-IIIc), where X = 2,4,5-trimethoxyphenyl (for series a), X = 2,4,6-trimethoxyphenyl (for series b), and X = 3,4,5-trimethoxyphenyl (for series c) were synthesised using basic catalysed aldol condensation and characterised using 1H NMR and FT-IR spectroscopies. Compound IIa was also characterised by single crystal X-ray analysis. The absorption and fluorescence emission spectra of these compounds revealed that the absorption and fluorescence depended on the heterocycle rings and trimethoxysubstituted phenyl rings linked to the enone system. The position of methoxy groups substantially affected the fluorescent properties. Compounds Ia-IIIa containing the 2,4,5-trimethoxyphenyl moiety exhibited the red-shift phenomenon and strong emission fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Batovska, D., Parushev, St., Slavova, A., Bankova, V., Tsvetkova, I., Ninova, M., & Najdenski, H. (2007). Study on the substituents’ effects of a series of synthetic chalcones against the yeast Candida albicans. European Journal of Medicinal Chemistry, 42, 87–92. DOI: 10.1016/j.ejmech.2006.08.012.

    Article  CAS  Google Scholar 

  • Bruker AXS (2005). APEX2 software. Madison, WI, USA: Bruker AXS Inc.

    Google Scholar 

  • Bruker AXS (2001). SHELXTL, Version 6.10. Madison, WI, USA: Bruker AXS Inc.

    Google Scholar 

  • Cordaro, J. G., McCusker, J. K., & Bergman, R. G. (2002). Synthesis of mono-substituted 2,2′-bipyridines. Chemical Communications, 2002, 1496–1497. DOI: 10.1039/b203595b.

    Article  Google Scholar 

  • Crasta, V., Ravindrachary, V., Bhajantri, R. F., & Gonsalves, R. (2004). Growth and characterization of an organic NLO crystal: 1-(4-methylphenyl)-3-(4-methoxyphenyl)-2-propen-1-one. Journal of Crystal Growth, 267, 129–133. DOI: 10.1016/j.jcrysgro.2004.03.037.

    Article  CAS  Google Scholar 

  • Dudeja, M., Malhotra, R., Gupta, M. P., & Dhindsa, K. S. (1993). Synthesis and characterization of cobalt(II), nickel(II) and copper(II) complexes of 1-acetyl-5-aryl-3-(substituted thienyl)-2-pyrazolines and their microbiocidal activity. Indian Journal of Chemistry, 32A, 975–979.

    CAS  Google Scholar 

  • Dulawat, S. S., Chundawat, J. S., Roy, R. S., Chundawat, S. S., & Verma, B. L. (2010). Microwave assisted improved synthesis of 6-carbethoxy-5-aryl-3-(2-thienyl)-2-cyclohexenones using inorganic solid support and their antibacterial activities. Journal of the Indian Chemical Society, 87, 981–986.

    CAS  Google Scholar 

  • Fahrni, C. J., Yang, L., & VanDerveer, D. G. (2003). Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophores: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation. Journal of the American Chemical Society, 125, 3799–3812. DOI: 10.1021/ja028266o.

    Article  CAS  Google Scholar 

  • Fayed, T. A., & Awad, M. K. (2004). Dual emission of chalconeanalogue dyes emitting in the red region. Chemical Physics, 303, 317–326. DOI: 10.1016/j.chemphys.2004.06.023.

    Article  CAS  Google Scholar 

  • Fun, H.-K., Jebas, S. R., Patil, P. S., & Dharmaprakash, S. M. (2008). (E)-1-(2-Thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E, E64, o1510–o1511. DOI: 10.1107/S1600536808021375.

    Article  CAS  Google Scholar 

  • Fun, H.-K., Suwunwong, T., Chantrapromma, S., & Karalai, C. (2010a). (E)-1-(2-Furyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E, E66, o2559–o2560. DOI: 10.1107/S1600536810035762.

    Article  CAS  Google Scholar 

  • Fun, H.-K., Suwunwong, T., Chantrapromma, S., & Karalai, C. (2010b). (E)-1-(2-Furyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E, E66, o3070–o3071. DOI: 10.1107/S160053681004451X.

    Article  CAS  Google Scholar 

  • Gaber, M., El-Daly, S. A., Fayed, T. A., & El-Sayed, Y. S. (2008). Photophysical properties, laser activity and photoreactivity of a heteroaryl chalcone. A model of solvatochromic fluorophore. Optics & Laser Technology, 40, 528–537. DOI: 10.1016/j.optlastec.2007.08.006.

    Article  CAS  Google Scholar 

  • Hirano, J., Hamase, K., Fukuda, H., Tomita, T., & Zaitsu, K. (2004). Novel stable fluorophore, 6-methoxy-4-quinolone, with strong fluorescence in wide pH range of aqueous media, and its application as a fluorescent labeling reagent. Journal of Chromatography A, 1059, 225–231. DOI: 10.1016/j.chroma.2004.10.020.

    Article  CAS  Google Scholar 

  • Jung, Y. J., Son, K.-I., Oh, Y. E., & Noh, D.-Y. (2008). Ferrocenyl chalcones containing anthracenyl group: Synthesis, Xray crystal structures and electrochemical properties. Polyhedron, 27, 861–867. DOI: 10.1016/j.poly.2007.11.015.

    Article  CAS  Google Scholar 

  • Katiyar, S. S., Lalithambika, M., & Joshi, G. C. (1974). Polarographic investigations on α,β-unsaturated ketones: 1-(2-thienyl)-3-phenyl-2-propenones. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 53, 439–447. DOI: 10.1016/S0022-0728(74)80080-X.

    Article  CAS  Google Scholar 

  • Knyazhansky, M. I., Kharlanov, V. A., & Tymiansky, Y. R. (1998). Adiabatic structural relaxation in heterocyclic nitrogen-containing cations. The structure, absorption and fuorescence of the 2,4,6-triarylsubstituted pyridinium cations. Journal of Photochemistry and Photobiology A: Chemistry, 118, 151–156. DOI: 10.1016/S1010-6030(98)00377-3.

    Article  CAS  Google Scholar 

  • Lavrushin, V. F., Tsukerman, S. V., & Nikitchenko, V. M. (1962). Spectra of and halochromism in thiophene analogs of methoxychalcones and their vinylogs. Zhurnal Obshchei Khimii, 32, 3971–3977.

    CAS  Google Scholar 

  • Lavrushin, V. F., Tsukerman, S. V., & Nikitchenko, V. M. (1961). Synthesis of thiophene analogs of di- and trimethoxychalcones and their vinylogs. Zhurnal Obshchei Khimii, 31, 2845–2850.

    CAS  Google Scholar 

  • Lawrence, N. J., McGown, A. T., Ducki, S., & Hadfield, J. A. (2000). The interaction of chalcones with tubulin. Anti-Cancer Drug Design, 15, 135–141.

    CAS  Google Scholar 

  • Lin, R.-H., & Chuang, L.-M. (2007). U.S. Patent No. 2007037193. Alexandria, VA, USA: U.S. Patent and Trademark Office.

  • Lin, R.-H., Lin, L., Lin, S.-Y., & Lee, S.-H. (2007). International Patent No. WO 2007082178. Geneva, Switzerland: World Intellectual Property Organization

  • López, S. N., Castelli, M. V., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M., & Enriz, R. D. (2001). In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorganic & Medicinal Chemistry, 9, 1999–2013. DOI: 10.1016/S0968-0896(01)00116-X.

    Article  Google Scholar 

  • Maiti, M., Sinha, S., Deb, C., De, A., & Ganguly, T. (1999). Photophysics of 4-methoxy-benzo[b]thiophene in different environments. Its role in non-radiative transitions both as an electron and as an energy donor. Journal of Luminescence, 82, 259–276. DOI: 10.1016/S0022-2313(99)00062-9.

    CAS  Google Scholar 

  • Musil, Z., Zimcik, P., Miletin, M., Kopecky, K., Petrik, P., & Lenco, J. (2007). Influence of electron-withdrawing and electron-donating substituents on photophysical properties of azaphthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 186, 316–322. DOI: 10.1016/j.jphotochem.2006.08.024.

    Article  CAS  Google Scholar 

  • Navarini, A. L. F., Chiaradia, L. D., Mascarello, A., Fritzen, M., Nunes, R. J., Yunes, R. A., & Creczynski-Pasa, T. B. (2009). Hydroxychalcones induce apoptosis in B16–F10 melanoma cells via GSH and ATP depletion. European Journal of Medicinal Chemistry, 44, 1630–1637. DOI: 10.1016/j.ejmech.2008.09.009.

    Article  CAS  Google Scholar 

  • Nepali, K., Singh, G., Turan, A., Agarwal, A., Sapra, S., Kumar, R., Banerjee, U. C., Verma, P. K., Satti, N. K., Gupta, M. K., Suri, O. P., & Dhar, K. L. (2011). A rational approach for the design and synthesis of 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles as a new class of potential non-purine xanthine oxidase inhibitors. Bioorganic & Medicinal Chemistry, 19, 1950–1958. DOI: 10.1016/j.bmc.2011.01.058.

    Article  CAS  Google Scholar 

  • Nielsen, S. F., Boesen, T., Larsen, M., Schønning, K., & Kromann, H. (2004). Antibacterial chalcones—bioisosteric replacement of the 4′-hydroxy group. Bioorganic & Medicinal Chemistry, 12, 3047–3054. DOI: 10.1016/j.bmc.2004.03.071.

    Article  CAS  Google Scholar 

  • Niu, C.-G., Guan, A.-L., Zeng, G.-M., Liu, Y.-G., & Li, Z.-W. (2006). Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta, 577, 264–270. DOI: 10.1016/j.aca.2006.06.046.

    Article  CAS  Google Scholar 

  • Percino, M. J., Chapela, V. M., Pérez-Gutiérrez, E., Cerón, M., & Soriano, G. (2011). Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles. Chemical Papers, 65, 42–51. DOI: 10.2478/s11696-010-0075-x.

    Article  CAS  Google Scholar 

  • Prasad, Y. R., Kumar P. P., & Kumar, P. R. (2007a). Synthesis and biological evaluation of some new 2,4,6-trisubstituted pyrimidines. Oriental Journal of Chemistry, 23, 1069–1072.

    CAS  Google Scholar 

  • Prasad, Y. R., Kumar, P. P., Kumar, P. R., & Rao, A. S. (2008). Synthesis and antimicrobial activity of some new chalcones of 2-acetyl pyridine. E-Journal of Chemistry, 5, 144–148.

    Google Scholar 

  • Prasad, Y. R., Kumar, P. R., Sarath, N., & Rao, A. S. (2007b). Synthesis and antimicrobial activity of some new chalcones of 2-acetylthiophene. International Journal of Chemical Sciences, 5, 2372–2378.

    CAS  Google Scholar 

  • Ramesh, B., Kulakarni, S. V., & Ravindra, R. (2010). Synthesis, spectral studies and anti-cancer activities of some new pyrimidine derivatives. International Journal of Pharmaceutical Sciences, 2, 426–428.

    CAS  Google Scholar 

  • Ramesh, B., Prasad, Y. R., & Ahmed, S. M. (2009a). Synthesis and anti-microbial activity of some new pyrimidine derivatives. Pharmacologyonline, 2, 331–335.

    Google Scholar 

  • Ramesh, B., Prasad, Y. R., & Ahmed, S. M. (2009b). Synthesis and antimicrobial activity of some 2-pyrazoline derivatives. Pharmacologyonline, 2, 327–330.

    Google Scholar 

  • Ramesh, B., & Rao, B. S. (2010). Synthesis, spectral studies and anti-inflammatory activity of 2-acetyl thiophene. E-Journal of Chemistry, 7, 433–436.

    CAS  Google Scholar 

  • Rhys Williams, A. T., Winfield, S. A., & Miller, J. N. (1983). Relative fluorescence quantum yields using a computercontrolled luminescence spectrometer. Analyst, 108, 1067–1071. DOI: 10.1039/an9830801067.

    Article  Google Scholar 

  • Romagnoli, R., Baraldi, P. G., Carrion, M. D., Cara, C. L., Cruz-Lopez, O., Preti, D., Tolomeo, M., Grimaudo, S., Di Cristina, A., Zonta, N., Balzarini, J., Brancale, A., Sarkar, T., & Hamel, E. (2008). Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorganic & Medicinal Chemistry, 16, 5367–5376. DOI: 10.1016/j.bmc.2008.04.026.

    Article  CAS  Google Scholar 

  • Roman, G. (2004). Cyclohexenones through addition of ethyl acetoacetate to chalcones derived from 2-acetylthiophene. Acta Chimica Slovenica, 51, 537–544.

    CAS  Google Scholar 

  • Salem, M. M., & Werbovetz, K. A. (2005). Antiprotozoal compounds from Psorothamnus polydenius. Journal of Natural Products, 68, 108–111. DOI: 10.1021/np049682k.

    Article  CAS  Google Scholar 

  • Schlangen, K., Miosic, S., Topuz, F., Muster, G., Marosits, T., Seitz, C., & Halbwirth, H. (2009). Chalcone 3-hydroxylation is not a general property of flavonoid 3′-hydroxylase. Plant Science, 177, 97–102. DOI: 10.1016/j.plantsci.2009.04.002.

    Article  CAS  Google Scholar 

  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, A64, 112–122. DOI: 10.1107/S0108767307043930.

    CAS  Google Scholar 

  • Sheldrick, G. M. (2003). SADABS, Version 2.10. Göttingen, Germany: University of Göttingen.

    Google Scholar 

  • Siemens AXS (1998). SMART and SAINT, Version 5.0 Area detector control and integration software. Madison, WI, USA: Siemens AXS Inc.

    Google Scholar 

  • Singhal, R. K., & Mishra, N. K. (1985). Studies on cycloimmonium ylides: synthesis of some new 2,4,6-triarylsubstituted pyridines via pyridinium ylides. Indian Journal of Chemistry Section B, 24B, 1079–1080.

    CAS  Google Scholar 

  • Singhal, R. K., & Misra, N. K. (1986). Studies on aroylmethylenesulfonium ylides: synthesis of some new 1,2,3-trisubstituted cyclopropanes via sulfonium ylides. Current Science, 55, 783–784.

    CAS  Google Scholar 

  • Sivakumar, P. M., Prabhawathi, V., & Doble, M. (2010). 2-Methoxy-2′,4′-dichloro chalcone as an antimicrofoulant against marine bacterial biofilm. Colloids and Surfaces B: Biointerfaces, 81, 439–446. DOI: 10.1016/j.colsurfb.2010.07.037.

    Article  CAS  Google Scholar 

  • Sivakumar, P. M., Priya, S., & Doble, M. (2009). Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents. Chemical Biology & Drug Design, 73, 403–415. DOI: 10.1111/j.1747-0285.2009.00793.x.

    Article  CAS  Google Scholar 

  • Spek, A. L. (2003). Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 7–13. DOI: 10.1107/S0021889802022112.

    Article  CAS  Google Scholar 

  • Sun, X., Zhang, J., & He, B. (2005). The synthesis and photochemical characterization of meso-tetra-thienyl porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 172, 283–288. DOI: 10.1016/j.jphotochem.2004.12.016.

    Article  CAS  Google Scholar 

  • Sun, Y.-F., & Cui, Y.-P. (2009). The synthesis, structure and spectroscopic properties of novel oxazolone-, pyrazolone- and pyrazoline-containing heterocycle chromophores. Dyes and Pigments, 81, 27–34. DOI: 10.1016/j.dyepig.2008.08.010.

    Article  CAS  Google Scholar 

  • Sun, Y.-F., & Cui, Y.-P. (2008). The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety. Dyes and Pigments, 78, 65–76. DOI: 10.1016/j.dyepig.2007.10.014.

    Article  CAS  Google Scholar 

  • Suwunwong, T., Chantrapromma, S., Pakdeevanich, P., & Fun, H.-K. (2009). (E)-1-(2-Thienyl)-3-(3,4,5-trimethoxyphenyl) prop-2-en-1-one. Acta Crystallographica Section E, E65, o1575–o1576. DOI: 10.1107/S1600536809021850.

    Article  CAS  Google Scholar 

  • Suzuki, T., Shinkai, M., & Nanba, N. (1995a). Japan Patent No. 7126543. Tokyo, Japan: Japan Patent Office.

  • Suzuki, T., Shinkai, M., & Nanba, N. (1995b). Japan Patent No. 7085499. Tokyo, Japan: Japan Patent Office.

  • Tsukerman, S. V., Nikitchenko, V. M., Orlov, V. D., & Lavrushin, V. F. (1969). Dipole moments of thiophene analogs of chalcones and their vinylogs. Chemistry of Heterocyclic Compounds, 3, 173–177. DOI: 10.1007/BF01172541.

    Article  Google Scholar 

  • Tsukerman, S. V., Nikitchenko, V. M., Rozum, Y. S., & Lavrushin, V. F. (1967). Infrared spectra of thiophene analogs of chalcones and their vinylogs. Chemistry of Heterocyclic Compounds, 3, 361–366. DOI: 10.1007/BF00945365.

    Article  Google Scholar 

  • Werts, M. H. V., Nerambourg, N., Pélégry, D., Le Grand, Y., & Blanchard-Desce, M. (2005). Action cross sections of twophoton excited luminescence of some Eu(III) and Tb(III) complexes. Photochemical & Photobiological Sciences, 4, 531–538. DOI: 10.1039/b504495b.

    Article  CAS  Google Scholar 

  • Won, S.-J., Liu, C.-T., Tsao, L.-T., Weng, J.-R., Ko, H.-H., Wang, J.-P., & Lin, C.-N. (2005). Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. European Journal of Medicinal Chemistry, 40, 103–112. DOI: 10.1016/j.ejmech.2004.09.006.

    Article  CAS  Google Scholar 

  • Xu, Z., Bai, G., & Dong, C. (2005). Studies on interaction of an intramolecular charge transfer fluorescence probe: 4′-Dimethylamino-2,5-dihydroxychalcone with DNA. Bioorganic & Medicinal Chemistry, 13, 5694–5699. DOI: 10.1016/j.bmc.2005.06.023.

    Article  CAS  Google Scholar 

  • Zangade, S. B., Jadhav, J. D., Lalpod, Vibhute, Y. B., & Dawane, B. S. (2010). Synthesis and antimicrobial activity of some new chalcones and flavones containing substituted naphthalene moiety. Journal of Chemical and Pharmaceutical Research, 2, 310–314.

    CAS  Google Scholar 

  • Zhang, J., Xu, Z., Wei, Y., Shuang, S., & Dong, C. (2008). Spectral properties of intramolecular charge transfer fluorescence probe 1-keto-2-(p-dimethylaminobenzal)-tetrahydronaphthalene. Spectrochimica Acta Part A, 70, 888–891. DOI: 10.1016/j.saa.2007.10.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchada Chantrapromma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suwunwong, T., Chantrapromma, S. & Fun, HK. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives. Chem. Pap. 65, 890–897 (2011). https://doi.org/10.2478/s11696-011-0084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0084-4

Keywords

Navigation