Skip to main content
Log in

Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A series of neutral gelators and cationic amphiphiles derived from 1,2 diphenylethylenediamine (I) and 1,2-cyclohexanediamine (II) was synthesised. Helical silica nanotubes were prepared utilising these organic gelators through sol-gel polycondensation of tetraethoxy silane, (TEOS-silica source). Right- and left-handed helical nanotubes respectively were obtained from a 1: 1 mass mixture of optically active, (1S,2S)-III-(1S,2S)-V neutral gelator and (1S,2S)-IV-(1S,2S)-VI cationic amphiphile and a 1: 1 mass mixture of optically active, (1R,2R)-III-(1R,2R)-V neutral gelator and (1R,2R)-IV-(1R,2R)-VI cationic amphiphile, indicating that the handedness of the helical nanotubes varied with the change in the neutral gelator precursors used. The nanotubes were characterised by SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1995). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402, 867–821. DOI: 10.1038/47229.

    Google Scholar 

  • Bian, S.-W., Ma, Z., Zhang, L.-S., Niu, F., & Song, W.-G. (2009). Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 10, 1261–1263. DOI: 10.1039/B821196E.

    Article  Google Scholar 

  • Bruzzoniti, M. C., Mentasti, E., Sarzanini, C., Onida, B., Bonelli, B., & Garrone, E. (2000). Retention properties of mesoporous silica-based materials. Analytica Chimica Acta, 422, 231–238. DOI: 10.1016/S0003-2670(00)01070-9.

    Article  CAS  Google Scholar 

  • Che, S., Liu, Z., Ohsuna, T., Sakamoto, K., Terasaki, O., & Tatsumi, T. (2004). Synthesis and characterization of chiral mesoporous silica. Nature, 429, 281–284. DOI: 10.1038/nature02529.

    Article  CAS  Google Scholar 

  • Cho, S. J., Kim, H. J., Lee, J. H., Choi, H. W., Kim, H. G., Chung, H. M., & Do, J. T. (2010). Silica coated titania nanotubes for drug delivery system. Materials Letters, 64, 1664–1667. DOI: 10.1016/j.matlet.2010.05.002.

    Article  CAS  Google Scholar 

  • Delclos, T., Aimé, C., Pouget, E., Brizard, A., Huc, I., Delville, M.-H., & Oda, R. (2008). Individualized silica nanohelices and nanotubes: Tuning inorganic nanostructures using lipidic self-assemblies. Nano Letters, 8, 1929–1935. DOI: 10.1021/nl080664n.

    Article  CAS  Google Scholar 

  • Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schüth, F., & Stucky, G. D. (1994). Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 368, 317–321. DOI: 10.1038/368317a0.

    Article  CAS  Google Scholar 

  • Hyun, M.-H., Shin, M.-S., Kim, T.-K., Jung, O.-S., Kim, J.-P., Jeong, E.-D., & Jin, J. S. (2009). The role of the neutral and cationic gelators from (1S,2S)-(−)-diphenylethylenediamine for the preparation of silica nano tubes. Bulletin of the Korean Chemical Society, 30, 1641–1643. DOI: 10.5012/bkcs.2009.30.7.1641.

    Article  CAS  Google Scholar 

  • Jung, J. H., Kobayashi, H., Masuda, M., Shimizu, T., & Shinkai, S. (2001). Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription. Journal of the American Chemical Society, 123, 8785–8789. DOI: 10.1021/ja010508h.

    Article  CAS  Google Scholar 

  • Jung, J. H., Ono, Y., Hanabusa, K., & Shinkai, S. (2000a). Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives. Journal of the American Chemical Society, 122, 5008–5009. DOI: 10.1021/ja000449s.

    Article  CAS  Google Scholar 

  • Jung, J. H., Ono, Y., & Shinkai, S. (2000b). Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica: Creation of both right- and left-handed silica structures by helical organogel fibers. Chemistry — A European Journal, 6, 4552–4557. DOI: 10.1002/1521-3765(20001215)6:24<4552::AID-CHEM4552>3.0.CO;2-5.

    Article  CAS  Google Scholar 

  • Jung, J. H., Shinkai, S., & Shimizu, T. (2003). Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica. Chemistry of Materials, 15, 2141–2145. DOI: 10.1021/cm0217912.

    Article  CAS  Google Scholar 

  • Kim, S. S., Zhang, W., & Pinnavaia, T. J. (1998). Ultrastable mesostructured silica vesicles. Science, 282, 1302–1305. DOI: 10.1126/science.282.5392.1302.

    Article  CAS  Google Scholar 

  • Kim, T. K., Jeong, E. D., Oh, C. Y., Hyun, M. H., Lee, M. S., Moon, H. K., Kim, J.-P., Jung, O.-S., Nawaz Khan, F., & Jin, J. S. (2011). Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica. Chemical Papers, 65, 495–503, DOI: 10.2478/s11696-011-0042-1.

    Article  CAS  Google Scholar 

  • Kleitz, F., Marlow, F., Stucky, G. D., & Schüth, F. (2001). Mesoporous silica fibers: Synthesis, internal structure, and growth kinetics. Chemistry of Materials, 13, 3587–3595. DOI: 10.1021/cm0110324.

    Article  CAS  Google Scholar 

  • Liang, Z., & Susha, A. S. (2004). Mesostructured silica tubes and rods by templating porous membranes. Chemistry — A European Journal, 10, 4910–4914. DOI: 10.1002/chem.200400005.

    Article  CAS  Google Scholar 

  • Mecerreyes, D., Huang, E., Magbitang, T., Volksen, W., Hawker, C. J., Lee, V. Y., Miller, R. D., & Hedrick, J. L. (2001). Application of hyperbranched block copolymers as templates for the generation of nanoporous organosilicates. High Performance Polymers, 13, S11–S19. DOI: 10.1088/0954-0083/13/2/302.

    Article  CAS  Google Scholar 

  • Paik, P., Gedanken, A., & Mastai, Y. (2010). Chiral separation abilities: Aspartic acid block copolymer-imprinted mesoporous silica. Microporous and Mesoporous Materials, 129, 82–89. DOI: 10.1016/j.micromeso.2009.09.001.

    Article  CAS  Google Scholar 

  • Piepenbrock, M.-O. M., Lloyd, G. O., Clark, N., & Steed, J. W. (2010). Metal- and anion-binding supramolecular gels. Chemical Reviews, 110, 1960–2004. DOI: 10.1021/cr9003067.

    Article  CAS  Google Scholar 

  • Qiao, Y., Lin, Y., Wang, Y., Yang, Z., Liu, J., Zhou, J., Yan, Y., & Huang, J. (2009). Metal-driven hierarchical self-assembled one-dimensional nanohelices. Nano Letters, 9, 4500–4504. DOI: 10.1021/nl9028335.

    Article  CAS  Google Scholar 

  • Qiu, H., Wang, S., Zhang, W., Sakamoto, K., Terasaki, O., Inoue, Y., & Che, S. (2008). Steric and temperature control of enantiopurity of chiral mesoporous silica. The Journal of Physical Chemistry C, 112, 1871–1877. DOI: 10.1021/jp709798q.

    Article  CAS  Google Scholar 

  • Roopan, S. M., & Nawaz Khan, F. R. (2010a). ZnO nanoparticles in the synthesis of AB ring core of camptothecin. Chemical Papers, 64, 812–817. DOI: 10.2478/s11696-010-0058-y.

    Article  CAS  Google Scholar 

  • Roopan, S. M., & Nawaz Khan, F. R. (2010b). ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate. Chemical Papers, 64, 678–682. DOI: 10.2478/s11696-010-0045-3.

    Article  CAS  Google Scholar 

  • Roopan, S. M., & Nawaz Khan, F. R. (2011). SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-indolo [3,2-c]-acridine derivatives. Medicinal Chemistry Research, 20, 732–737. DOI: 10.1007/s00044-010-9381-7.

    Article  CAS  Google Scholar 

  • Roopan, S. M., Nawaz Khan, F. R., & Mandal, B. K. (2010). Fe nano particles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Letters, 51, 2309–2311. DOI: 10.1016/j.tetlet.2010.02.128.

    Article  CAS  Google Scholar 

  • Sayari, A. (1996). Catalysis by crystalline mesoporous molecular sieves. Chemistry of Materials, 8, 1840–1852. DOI: 10.1021/cm950585+.

    Article  CAS  Google Scholar 

  • Stupp, S. I., & Braun, P. V. (1997). Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 277, 1242–1248. DOI: 10.1126/science.277.5330.1242.

    Article  CAS  Google Scholar 

  • Tanev, P. T., Liang, Y., & Pinnavaia, T. J. (1997). Assembly of mesoporous lamellar silicas with hierarchical particle architectures. Journal of the American Chemical Society, 119, 8616–8624. DOI: 10.1021/ja970228v.

    Article  CAS  Google Scholar 

  • Tanev, P. T., & Pinnavaia, T. J. (1996). Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science, 271, 1267–1269. DOI: 10.1126/science.271.5253.1267.

    Article  CAS  Google Scholar 

  • Wang, L., Li, Y., Wang, H., Zhang, M., Chen, Y., Li, B., & Yang, Y. (2010). Nanofabrication of helical hybrid silica nanotubes using anionic gelators. Materials Chemistry and Physics, 124, 609–613. DOI: 10.1016/j.matchemphys.2010.07.021.

    Article  CAS  Google Scholar 

  • Yang, H., Coombs, N., & Ozin, G. A. (1997). Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 386, 692–695. DOI: 10.1038/386692a0.

    Article  CAS  Google Scholar 

  • Yang, Y., Suzuki, M., Owa, S., Shirai, H., & Hanabusa, K. (2006). Control of helical silica nanostructures using a chiral surfactant. Journal of Materials Chemistry, 16, 1644–1650. DOI: 10.1039/B517121K.

    Article  CAS  Google Scholar 

  • Yang, Z., Niu, Z., Cao, X., Yang, Z., Lu, Y., Hu, Z., & Han, C. C. (2003). Template synthesis of uniform 1D mesostructured silica materials and their arrays in anodic alumina membranes. Angewandte Chemie International Edition, 42, 4201–4203. DOI: 10.1002/anie.200250808.

    Article  CAS  Google Scholar 

  • Yoza, K., Amanokura, N., Ono, Y., Akao, T., Shinmori, H., Takeuchi, M., Shinkai, S., & Reinhoudt, D. N. (1999). Sugar-integrated gelators of organic solvents—Their remarkable diversity in gelation ability and aggregate structure. Chemistry — A European Journal, 5, 2722–2729. DOI: 10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM 2722>3.0.CO;2-N.

    Article  CAS  Google Scholar 

  • Yu, Y., Qiu, H., Wu, X., Li, H., Li, Y., Sakamoto, Y., Inoue, Y., Sakamoto, K., Terasaki, O., & Che, S. (2008). Synthesis and characterization of silica nanotubes with radially oriented mesopores. Advanced Functional Materials, 18, 541–550. DOI: 10.1002/adfm.200700593.

    Article  CAS  Google Scholar 

  • Zhang, H., Quan, X., Chen, S., Zhao, H., & Zhao, Y. (2006). The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability. Applied Surface Science, 252, 8598–8604. DOI: 10.1016/j.apsusc.2005.11.090.

    Article  CAS  Google Scholar 

  • Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548–552. DOI: 10.1126/science.279.5350.548.

    Article  CAS  Google Scholar 

  • Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., & Li, Y. (2005). Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angewandte Chemie International Edition, 44, 5083–5087. DOI: 10.1002/anie.200501500.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fazlur Rahman Nawaz Khan, Myung Ho Hyun or Jong Sung Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.K., Jeong, E.D., Oh, C.Y. et al. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes. Chem. Pap. 65, 863–872 (2011). https://doi.org/10.2478/s11696-011-0083-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0083-5

Keywords

Navigation