Skip to main content
Log in

Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Transport of butyric acid (BA) through a supported liquid membrane (SLM) containing phosphonium ionic liquid (IL) Cyphos IL-104 and dodecane occurs by two mechanisms. The first is related to the physical solubility of undissociated acid in dodecane in the form of a monomer or dimer and the second to the reactive extraction of acid by IL. Although the model of pertraction indicates that increasing the mean concentration of acid in the feed, c F,lmv, increases the participation of pertraction based on the physical solubility; in the tested range of c F,lmv from 0 kmol m−3 to 0.45 kmol m−3 it does not play an important role and at the highest c F,lmv value, less than 10 % of the overall BA transport were achieved. The presence of IL in SLM considerably increases the value of the overall mass transfer coefficient in pertraction at low BA concentrations. However, at c F,lmv > 0.4 kmol m−3 its values are similar for SLMs with and without IL. Compared to lactic acid, the pertraction of BA through the same SLM is about five times faster. Reactive transport of BA is connected with the back transport of water via reverse micelles decomposition and formation on the extraction and stripping interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blahušiak, M., Schlosser, Š., & Marták, J. (2011). Extraction of butyric acid by a solvent impregnated resin containing ionic liquid. Reactive and Functional Polymers, 71, 736–744. doi: 10.1016/j.reactfunctpolym.2011.04.002.

    Article  Google Scholar 

  • Blahušiak, M., Schlosser, Š., & Marták, J. (2010). Simulation of a hybrid fermentation-separation process for production of butyric acid. Chemical Papers, 64, 213–222. DOI: 10.2478/s11696-009-0114-7.

    Article  Google Scholar 

  • Bradaric, C. J., Downard, A., Kennedy, C., Robertson, A. J. & Zhou, Y. (2003). Industrial preparation of phosphonium ionic liquids. Green Chemistry, 5, 143–152. DOI: 10.1039/b209734f.

    Article  CAS  Google Scholar 

  • Cull, S. G., Holbrey, J. D., Vargas-Mora, V., Seddon, K. R., & Lye, G. J. (2000). Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnology and Bioengineering, 69, 227–233. DOI: 10.1002/(SICI)1097-0290(20000720).

    Article  CAS  Google Scholar 

  • Dietz, M. L. (2006). Ionic liquids as extraction solvents: Where do we stand? Separation Science and Technology, 41, 2047–2063. DOI: 10.1080/01496390600743144.

    Article  CAS  Google Scholar 

  • Huddleston, J. G., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chemical Communications, 1998, 1765–1766. DOI: 10.1039/A803999B.

    Article  Google Scholar 

  • Iversen, S. B., Bhatia, V. K., Dam-Johansen, K., & Jonsson, G. (1997). Characterization of microporous membranes for use in membrane contactor. Journal of Membrane Science, 130, 205–217. DOI: 10.1016/S0376-7388(97)00026-4.

    Article  CAS  Google Scholar 

  • Kertész, R., Schlosser, Š., & Šimo, M. (2004). Mass-transfer characteristics of a spiral-channel SLM module in pertraction of phenylalanine. Desalination, 163, 103–117. DOI: 10.1016/S0011-9164(04)90182-8.

    Article  Google Scholar 

  • Kubišová, Ľ., Sabolová, E., Schlosser, Š., Marták, J., & Kertész, R. (2002). Membrane based solvent extraction and stripping of a heterocyclic carboxylic acid in hollow fiber contactors. Desalination, 148, 205–211. DOI: 10.1016/S0011-9164(02)00699-9.

    Article  Google Scholar 

  • Marták, J., & Schlosser, Š. (2008). Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid. Chemical Papers, 62, 42–50. DOI: 10.2478/s11696-007-0077-5.

    Article  Google Scholar 

  • Marták, J., & Schlosser, Š. (2007). Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57, 483–494. doi: 10.1016/j.seppur.2006.09.013.

    Article  Google Scholar 

  • Marták, J., & Schlosser, Š. (2006). Phosphonium ionic liquids as new, reactive extractants of lactic acid. Chemical Papers, 60, 395–398. DOI: 10.2478/s11696-006-0072-2.

    Article  Google Scholar 

  • Marták, J., & Schlosser, Š. (2004). Ionic liquids in pertraction and extraction of organic acids. In 19th ‘Ars Separatoria’, 10–13 June 2004. Złoty Potok, Poland: University of Technology and Agriculture in Bydgoszcz. (http://www.arsseparatoria.chem.uni.torun.pl)

    Google Scholar 

  • Marták, J., & Schlosser, Š. (2003). New formulations of liquid membranes and solvents based on ionic liquids. In Š. Schlosser, & R. Kertész (Eds.), PERMEA 2003, 7–11 September 2003 (P6.6). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Marták, J., Schlosser, Š., & Vlčková, S. (2008). Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. Journal of Membrane Science, 318, 298–310. doi: 10.1016/j.memsci.2008.02.064.

    Article  Google Scholar 

  • Matsumoto, M., Hasegawa, W., Kondo, K., Shimamura, T., & Tsuji, M. (2010). Application of supported ionic liquid membranes using a flat sheet and hollow fibers to lactic acid recovery. Desalination and Water Treatment, 14, 37–46. doi: 10.5004/dwt.2010.1009.

    Article  CAS  Google Scholar 

  • Matsumoto, M., Inomoto, Y., & Kondo, K. (2005). Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. Journal of Membrane Science, 246, 77–81. doi: 10.1016/j.memsci.2004.08.013.

    Article  CAS  Google Scholar 

  • Matsumoto, M., Mochiduki, K., Fukunishi, K., & Kondo, K. (2004). Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Separation and Purification Technology, 40, 97–101. doi: 10.1016/j.seppur.2004.01.009.

    Article  CAS  Google Scholar 

  • McFarlane, J., Ridenour, W. B., Luo, H., Hunt, R. D., DePaoli, D. W., & Ren, R. X. (2005). Room temperature ionic liquids for separating organics from produced water. Separation Science and Technology, 40, 1245–1265. doi: 10.1088/SS-200052807.

    Article  CAS  Google Scholar 

  • Noble, R. D., & Gin, D. L. (2011). Perspective on ionic liquids and ionic liquid membranes. Journal of Membrane Science, 369, 1–4. doi: 10.1016/j.memsci.2010.11.075.

    Article  CAS  Google Scholar 

  • Reid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1977). The properties of gases and liquids. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Rogers, R. D., & Seddon, K. R. (Eds.) (2005). Ionic liquids IIIb: Fundamentals, progress, challenges, and opportunities: Transformations and processes. Washington, DC, USA: ACS.

    Google Scholar 

  • Rogers, R. D., & Seddon, K. R. (Eds.) (2003). Ionic liquids as green solvents. Progress and prospects. Washington, DC, USA: ACS.

    Book  Google Scholar 

  • Sabolová, E., Schlosser, Š., & Marták, J. (2001). Liquid-liquid equilibria of butyric acid in water + solvent systems with trioctylamine as extractant. Journal of Chemical and Engineering Data, 46, 735–745. DOI: 10.1021/je000323a.

    Article  Google Scholar 

  • Schlosser, Š. (2009). Extractive separations in contactors with one and two immobilized L/L interfaces: Applications and perspectives. In E. Drioli, & L. Giorno (Eds.), Membrane operations. Innovative separations and transformations (pp. 513–542). Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Schlosser, Š., Kertész, R., & Marták, J. (2005). Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA. Separation and Purification Technology, 41, 237–266. doi: 10.1016/j.seppur.2004.07.019.

    Article  CAS  Google Scholar 

  • Schlosser, Š., & Marták, J. (2009). Separation of mixtures by pertraction or membrane-based solvent extraction and new extractants. In R. Wódzki (Ed.), Membranes: Theory and practice (pp. 123–152). Toruń, Poland: Nicolaus Copernicus University.

    Google Scholar 

  • Visser, A. E., Swatloski, R. P., Griffin, S. T., Hartman, D. H., & Rogers, R. D. (2001a). Liquid/liquid extraction of metalions in room temperature ionic liquids. Separation Science and Technology, 36, 785–804. DOI: 10.1081/SS-100103620.

    Article  CAS  Google Scholar 

  • Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J. H., & Rogers, R. D. (2001b). Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chemical Communications, 2001, 135–136. DOI: 10.1039/B008041L.

    Article  Google Scholar 

  • Wasserscheid, P., & Welton, T. (Eds.) (2008). Ionic liquids in synthesis. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1, 264–270. DOI: 10.1002/aic.690010222.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Schlosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marták, J., Schlosser, Š. & Blahušiak, M. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane. Chem. Pap. 65, 608–619 (2011). https://doi.org/10.2478/s11696-011-0069-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0069-3

Keywords

Navigation