Skip to main content

Advertisement

Log in

A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the present study, pervaporation was applied to the determination of tetrachloroethene (PCE) and dichloromethane (DCM) in liquid samples. PCE is the most commonly used solvent in drycleaning processes. PCE belongs to group 2A of carcinogens (probably carcinogenic to humans) according to the classification of the International Agency for Research on Cancer (IARC). DCM is also widely used as an industrial solvent for the purification and isolation of intermediates or products. DCM is classified as a “possible” human carcinogen by the IARC. The aim of this study was to evaluate a new procedure for the determination of DCM and PCE in liquid samples based on the pervaporative removal of DCM and PCE from liquid samples as an analyte isolation/enrichment technique, followed by a direct aqueous injection of the extracts onto the column of a gas chromatograph equipped with an electron capture detector (DAI-GC-ECD). The basic parameters of the new PV-DAI-GC-ECD procedure were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, H., Jeong, D., Jeong, H.-K., & Lee, Y. (2009). Pervaporation characteristics of trichlorinated organic compounds through Silicalite-1 zeolite membrane. Desalination, 245, 754–762. DOI: 10.1016/j.desal.2009.02.048.

    Article  CAS  Google Scholar 

  • Ahn, H., & Lee, Y. (2006). Pervaporation of dichlororinated organic compounds through silicalite-1 zeolite membrane. Journal Membrane Science, 279, 459–465. DOI: 10.1016/j.memsci.2005.12.060.

    Article  CAS  Google Scholar 

  • Chang, B.-J., Chang, Y.-H., Kim, D.-K., Kim, J.-H., & Lee, S.-B. (2005). New copolyimide membranes for the pervaporation of trichloroethylene from water. Journal of Membrane Science, 248, 99–107. DOI: 10.1016/j.memsci.2004.10.002.

    Article  CAS  Google Scholar 

  • Das, S., Banthia, A. K., & Adhikari, B. (2006). Removal of chlorinated volatile organic contaminants from water by pervaporation using a novel polyurethane urea-poly(methyl methacrylate) interpenetrating network membrane. Chemical Engineering Science, 61, 6454–6467. DOI: 10.1016/j.ces.2006.06.014.

    Article  CAS  Google Scholar 

  • Demeestere, K., Dewulf, J., De Witte, B., & Van Langenhove, H. (2007). Sample preparation for the analysis of volatile organic compounds in air and water matrices. Journal of Chromatography A, 1153, 130–144. DOI: 10.1016/j.chroma.2007.01.012.

    Article  CAS  Google Scholar 

  • Dutta, B. K., & Sikdar, S. K. (1999). Separation of volatile organic compounds from aqueous solutions by pervaporation using S-B-S block copolymer membranes. Environmental Science & Technology, 33, 1709–1716. DOI: 10.1021/es980689w.

    Article  CAS  Google Scholar 

  • Furuki, K., Ukai, H., Okamoto, S., Takada, S., Kawai, T., Miyama, Y., Mitsuyoshi, K., Zhang, Z.-W., Higashikawa, K., & Ikeda, M. (2000). Monitoring of occupational exposure to tetrachloroethene by analysis for unmetabolized tetrachloroethene in blood and urine in comparison with urinalysis for trichloroacetic acid. International Archives of Occupational and Environmental Health, 73, 221–227. DOI: 10.1007/s004200050421.

    Article  CAS  Google Scholar 

  • Ganapathi-Desai, S., & Sikdar, S. K. (2000). A polymer-ceramic composite membrane for recovering volatile organic compounds from wastewaters by pervaporation. Clean Products & Processes, 2, 140–148.

    Article  Google Scholar 

  • Hellweg, S., Demou, E., Scheringer, M., McKone, T. E., & Hungerbühler, K. (2005). Confronting workplace exposure to chemicals with LCA: Examples of trichloroethylene in metal degreasing and dry cleaning. Environmental Science & Technology, 39, 7741–7748. DOI: 10.1021/es047944z.

    Article  CAS  Google Scholar 

  • Huber, L. (2007). Validation and qualification in analytical laboratories (2nd ed.). New York, NY, USA: Informa Healthcare USA, Inc.

    Google Scholar 

  • International Organization for Standardization (ISO) (1995). Guide to the expression of uncertainty in measurement (GUM). Geneva, Switzerland: ISO.

    Google Scholar 

  • Jakubowska, N., Kujawski, W., Polkowska, Ż., Konieczka, P., & Namieśnik, J. (2007a). Procedure of determination of volatile trihalomethanes in human urine with pervaporation and gas chromatography. International Journal of Environmental Analytical Chemistry, 87, 449–457. DOI: 10.1080/03067310601109249.

    Article  Google Scholar 

  • Jakubowska, N., Polkowska, Ż., Kujawski, W., Konieczka, P., & Namieśnik, J. (2007b). comparison of three solvent-free techniques coupled with gas chromatography for determining trihalomethanes in urine samples. Analytical and Bioanalytical Chemistry, 388, 691–698. DOI: 10.1007/s00216-007-1259-2.

    Article  CAS  Google Scholar 

  • Jiang, X., Gu, J., Shen, Y., Wang, S., & Tian, X. (2011). New fluorinated siloxane-imide block copolymer membranes for application in organophilic pervaporation. Desalination, 265, 74–80. DOI: 10.1016/j.desal.2010.07.034.

    Article  CAS  Google Scholar 

  • Kujawski, W. (2000a). Application of pervaporation and vapor permeation in environmental protection. Polish Journal of Environmental Studies, 9, 13–26.

    CAS  Google Scholar 

  • Kujawski, W. (2000b). Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures. Separation Science and Technology, 35, 89–108. DOI: 10.1081/SS-100100145.

    Article  CAS  Google Scholar 

  • Liang, L., Dickson, J. M., Jiang, J., & Brook, M. A. (2004). Effect of low flow rate on pervaporation of 1,2-dichloroethane with novel polydimethylsiloxane composite membranes. Journal of Membrane Science, 231, 71–79. DOI: 10.1016/j. memsci.2003.10.038.

    Article  CAS  Google Scholar 

  • McLean, D., Pearce, N., Langseth, H., Jäppinen, P., Szadkowska-Stanczyk, I., Persson, B., Wild, P., Kishi, R., Lynge, E., Henneberger, P., Sala, M., Teschke, K., Kauppinen, T., Colin, D., Kogevinas, M., & Boffetta, P. (2006). Cancer mortality in workers exposed to organochlorine compounds in the pulp and paper industry: An international collaborative study. Environmental Health Perspectives, 114, 1007–1012. DOI: 10.1289/ehp.8588.

    Article  CAS  Google Scholar 

  • Mundt, K. A., Birk, T., & Burch, M. T. (2003). Critical review of the epidemiological literature on occupational exposure to perchloroethylene and cancer. International Archives of Occupational and Environmental Health, 76, 473–491. DOI: 10.1007/s00420-003-0457-2.

    Article  CAS  Google Scholar 

  • Paaso, N., Peuravuori, J., & Pihlaja, K. (2000). Extraction efficiency of chloroethenes from contaminated dry cleaner’s sludge with three different methods. Waste Management, 20, 69–74. DOI: 10.1016/S0956-053X(99)00299-8.

    Article  CAS  Google Scholar 

  • Peng, M., Vane, L. M., & Liu, S. X. (2003). Recent advances in VOCs removal from water by pervaporation. Journal of Hazardous Materials, B98, 69–90. DOI: 10.1016/S0304-3894(02)00360-6.

    Article  Google Scholar 

  • Perrin, M. C., Opler, M. G., Harlap, S., Harkavy-Friedman, J., Kleinhaus, K., Nahon, D., Fennig, S., Susser, E. S., & Malaspina, D. (2007). Tetrachloroethylene exposure and risk of schizophrenie: Offspring of dry cleaners in a population birth cohort, preliminary findings. Schizophrenia Research, 90, 251–254. DOI: 10.1016/j.schres.2006.09.024.

    Article  Google Scholar 

  • Polkowska, Ż, Kozłowska, K., Mazerska, Z., Górecki, T., & Namieśnik, J. (2006). Volatile organohalogen compounds in human urine: The effect of environmental exposure. Chemosphere, 62, 626–640. DOI: 10.1016/j.chemosphere.2005.05. 036.

    Article  CAS  Google Scholar 

  • Prieto, A., Basauri, O., Rodil, R., Usobiaga, A., Fernández, L. A., Etxebarria, N., & Zuloaga, O. (2010). Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. Journal of Chromatography A, 1217, 2642–2666. DOI: 10.1016/j.chroma. 2009.12.051.

    Article  CAS  Google Scholar 

  • Rutkiewicz, I., Kujawski, W., & Namieśnik, J. (2010). Pervaporation of volatile organohalogen compounds through polydimethylsiloxane membrane. Desalination, 264, 160–164. DOI: 10.1016/j.desal.2010.07.020.

    Article  CAS  Google Scholar 

  • Sae-Khow, O., & Mitra, S. (2010). Pervaporation in chemical analysis. Journal of Chromatography A, 1217, 2736–2746. DOI: 10.1016/j.chroma.2009.12.043.

    Article  CAS  Google Scholar 

  • Smitha, B., Suhanya, D., Sridhar, S., & Ramakrishna, M. (2004). Separation of organic-organic mixtures by pervaporation—a review. Journal of Membrane Science, 241, 1–21. DOI: 10.1016/j.memsci.2004.03.042.

    Article  CAS  Google Scholar 

  • Ukai, H., Inui, S., Takada, S., Dendo, J., Ogawa, J., Isobe, K., Ashida, T., Tamura, M., Tabuki, K., & Ikeda, M. (1997). Types of organic solvents used in small- to medium-scale industries in Japan; a nationwide field survey. International Archives of Occupational and Environmental Health, 70, 385–392. DOI: 10.1007/s004200050233.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Rutkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutkiewicz, I., Kujawski, W. & Namieśnik, J. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography. Chem. Pap. 65, 578–583 (2011). https://doi.org/10.2478/s11696-011-0065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0065-7

Keywords

Navigation