Skip to main content
Log in

Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A variety of structural analogues of streptolydigin exists in the cultural supernatants of Streptomyces lydicus AS 4.2501. The degradation of streptolydigin in cultural supernatants with different pH values kept at 25°C in a thermostatic bath was investigated using LC-MS/MS detection. Analysis of the alkaline supernatants (pH 9.50) provides evidence of degradation and conversion between streptolydigin and its structural analogues. Interestingly, a new streptolydigin analogue was detected by LC-MS and photo-diode array (PDA) detection in the process of alkaline degradation. After 48 h in a thermostatic bath, the degradation of streptolydigin and its two analogues at pH 9.50 approached pseudo-first order kinetics. Comparatively, the degradation of streptolydigin was much more rapid in the cultural supernatants with pH 3.05, only requiring 2 hours. Qualitative analysis of the degradation products by LC-MS/MS and PDA indicated that hydrolysis of the epoxy ether bond and acid amide bond was the major mechanism of degradation in acidic cultural supernatants. Two degradation products in the acid supernatant were assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aga, D. S., O’Connor, S., Ensley, S., Payero, J. O., Snow, D., & Tarkalson, D. (2005). Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 53, 7165–7171. DOI: 10.1021/jf050415+.

    Article  CAS  Google Scholar 

  • Bersanetti, P. A., Almeida, R. M. R. G., Barboza, M., Araújo, M. L. G. C., & Hokka, C. O. (2005). Kinetic studies on clavulanic acid degradation. Biochemical Engineering Journal, 23, 31–36. DOI: 10.1016/j.bej.2004.10.007.

    Article  CAS  Google Scholar 

  • Chai, W., Handa, Y., Suzuki, M., Saito, M., Kato, N., & Horiuchi, C. (2000). Biodegradation of bisphenol A by fungi. Applied Biochemistry and Biotechnology, 120, 175–182. DOI: 10.1385/ABAB:120:3:175.

    Article  Google Scholar 

  • Cirilli, R., Costi, R., Di Santo, R., Artico, M., Roux, A., Gallinella, B., Zanitti, L., & La Torre, F. (2003). Enantioselective liquid chromatography of C3-chiral 2,3-dihydro-1,2,5-benzothiadiazepin-4(5H)-one and thione 1,1-dioxides on polyacrylamide- and polysaccharide-based chiral stationary phases. Journal of Chromatography A, 993, 17–28. DOI: 10.1016/S0021-9673(03)00321-2.

    Article  CAS  Google Scholar 

  • Fagerquist, C. K., Lightfield, A. R., & Lehotay, S. J. (2005). Confirmatory and quantitative analysis of β-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 77, 1473–1482. DOI: 10.1021/ac040 138q.

    Article  CAS  Google Scholar 

  • Kozlova, E. V., Puntus, I. F., Slepenkin, A. V., & Boronin, A. M. (2004). Naphthalene degradation by Pseudomonas putida strains in soil model systems with arsenite. Process Biochemistry, 39, 1305–1308. DOI: 10.1016/j.procbio.2003.09.015.

    Article  CAS  Google Scholar 

  • Lee, S. H., Raboune, S., Walker, J. M., & Bradshaw, H. B. (2010). Distribution of endogenous farnesyl pyrophosphate and four species of lysophosphatidic acid in rodent brain. International Journal of Molecular Sciences, 11, 3965–3976. DOI: 10.3390/ijms11103965.

    Article  CAS  Google Scholar 

  • Li, L. Z., Qiao, B., & Yuan, Y. (2007). Nitrogen sources affect streptolydigin production and related secondary metabolites distribution of Streptomyces lydicus AS 4.2501 Chinese Journal of Chemical Engineering, 15, 403–410. DOI: 10.1016/S1004-9541(07)60099-8.

    Article  Google Scholar 

  • Li, X.-B., Qiao, B., & Yuan, Y.-J. (2006). Differential analysis of secondary metabolites by LC-MS following strain improvement of Streptomyces lydicus AS 4.2501. Biotechnology and Applied Biochemistry, 45, 107–118. DOI: 10.1042/BA20060 042.

    Article  CAS  Google Scholar 

  • Lim, S.-P., Gan, S.-N., & Tan, I. K. P. (2005). Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Applied Biochemistry and Biotechnology, 126, 23–33. DOI: 10.1007/s12010-005-0003-7.

    Article  CAS  Google Scholar 

  • Marriott, P., Aryusuk, K., Shellie, R., Ryan, D., Krisnangkura, K., Schurig, V., & Trapp, O. (2004). Molecular interconversion behaviour in comprehensive two-dimensional gas chromatography. Journal of Chromatography, 1033, 135–143. DOI: 10.1016/j.chroma.2004.01.035.

    Article  CAS  Google Scholar 

  • Olano, C., Gómez, C., Pérez, M., Palomino, M., Pineda-Lucena, A., Carbajo, R. J., Braña, A. F., Méndez, C., & Salas, J. A. (2009). Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chemistry & Biology, 16, 1031–1044. DOI: 10.1016/j.chembiol.2009.09.015.

    Article  CAS  Google Scholar 

  • Olšovská, J., Šululc, M., Novák, P., Pažoutov M. (2008). Liquid chromatography-tandem mass spectrometry characterization of ergocristam degradation products. Journal of Chromatography B, 873, 165–172. DOI: 10.1016/j. jchromb.2008.08.004.

    Article  Google Scholar 

  • Pronin, S. V., & Kozmin, S. A. (2010). Synthesis of streptolydigin, a potent bacterial RNA polymerase inhibitor. Journal of the American Chemical Society, 132, 14394–14396. DOI: 10.1021/ja107190w.

    Article  CAS  Google Scholar 

  • Rinehart, K. L., Beck, J. R., Borders, D. B., Epstein, W. W., Kinstle, T. H., Spicer, L. D., Krauss, D., & Button, A. C. (1963). Structure of streptolydigin. Antimicrobial Agents and Chemotherapy, 161, 346–348.

    Google Scholar 

  • Suzuki, T., Beuzenberg, V., Mackenzie, L., & Quilliam, M. A. (2003). Liquid chromatography-mass spectrometry of spiroketal stereoisomers of pectenotoxins and the analysis of novel pectenotoxin isomers in the toxic dinoflagellate Dinophysis acuta from New Zealand. Journal of Chromatography A, 992, 141–150. DOI: 10.1016/S0021-9673(03)00324-8.

    Article  CAS  Google Scholar 

  • Temiakov, D., Zenkin, N., Vassylyeva, M. N., Perederina, A., Tahirov, T. H., Kashkina, E., Savkina, M., Zorov, S., Nikiforov, V., Igarashi, N., Matsugaki, N., Wakatsuki, S., Severinov, K., & Vassylyev, D. G. (2005). Structural basis of transcription inhibition by antibiotic streptolydigin. Molecular Cell, 19, 655–666. DOI: 10.1016/j.molcel.2005.07.020.

    Article  CAS  Google Scholar 

  • Tuske, S., Sarafianos, S. G., Wang, X., Hudson, B., Sineva, E., Mukhopadhyay, J., Birktoft, J. J., Leroy, O., Ismail, S., Clark, A. D., Dharia, C., Napoli, A., Laptenko, O., Lee, J., Borukhov, S., Ebright, R. H., & Arnold, E. (2005). Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation. Cell, 122, 541–552. DOI: 10.1016/j.cell.2005.07.017.

    Article  CAS  Google Scholar 

  • Van Bocxlaer, J. F., Clauwaert, K. M., Lambert, W. E., Deforce, D. L., Van den Eeckhout, E. G., & De Leenheer, A. P. (2000). Liquid chromatography-mass spectrometry in forensic toxicology. Mass Spectrometry Reviews, 19, 165–214. DOI: 10.1002/1098-2787(200007)19:4〈165::AID-MAS1〉3.0.CO;2-Y.

    Article  Google Scholar 

  • Van Boekel, M. A. J. S. (1996). Statistical aspects of kinetic modeling for food science problems. Journal of Food Science, 61, 477–486. DOI: 10.1111/j.1365-2621.1996.tb13138.x.

    Article  Google Scholar 

  • Waterval, J. C. M., Bloks, J. C., Sparidans, R. W., Beijnen, J. H., Rodriguez-Campos, I. M., Bult, A., Lingeman, H., & Underberg, W. J. M. (2001). Degradation kinetics of aplidine, a new marine antitumoural cyclic peptide, in aqueous solution. Journal of Chromatography B: Biomedical Sciences and Applications, 754, 161–168. DOI: 10.1016/S0378-4347(00)00596-X.

    Article  CAS  Google Scholar 

  • Zhao, G.-R., Luo, T., Zhou, Y.-J., Jiang, X., Qiao, B., Yu, F.-M., & Yuan, Y.-J. (2009). fabC of Streptomyces lydicus involvement in the biosynthesis of streptolydigin. Applied Microbiology and Biotechnology, 83, 305–313. DOI: 10.1007/s00253-009-1872-4.

    Article  CAS  Google Scholar 

  • Zhao, Z. (Z.), Qin, X.-Z., & Reed, R. A. (2002). Identification by LC/MSn of degradates of a novel carbapenem antibiotic in an aqueous matrix. Journal of Pharmaceutical and Biomedical Analysis, 29, 173–181. DOI: 10.1016/S0731-7085(02)00008-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangzhi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Fu, J., Qiu, Y. et al. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501. Chem. Pap. 65, 652–659 (2011). https://doi.org/10.2478/s11696-011-0050-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0050-1

Keywords

Navigation