Skip to main content
Log in

Theoretical thermo-optical patterns relevant to glass crystallisation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Mie computations are performed to evaluate light scattering on the virtual microstructures relevant to lithium disilicate glass internal crystallisation. The computations are expressed in the form of optical transmission (OT) patterns evolved on a scale of growing lithium disilicate crystals. Input data include the crystals number density, their size, the wavelength of the incident electromagnetic radiation, the indices of refraction of the lithium disilicate glassy and crystalline phases and the thickness of the virtual glass slab. In the computations, the spherical shape of crystals and their random distribution are assumed. The results reveal the quantitative effects of individual input data constants on the overall course of the computed OT patterns. They also relate the computed OT data magnitudes to the corresponding glass crystallinity (α). In addition, they point to singular combinations of the input data constants defining the conditions under which the OT data could potentially stand for the kinetically important α data. Finally, the results aid better recognition of some fundamental as well as practical properties of the optical thermal methods based on the optical transmission measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthier, T., Fokin, V. M., & Zanotto, E. D. (2008). New large grain, highly crystalline, transparent glass-ceramics. Journal of Non-Crystalline Solids, 354, 1721–1730. DOI: 10.1016/j.jnoncrysol.2007.08.052.

    Article  CAS  Google Scholar 

  • Bohren, C. F., & Huffman, D. R. (1983). Absorption and scattering of light by small particles. New York, NY, USA: Wiley.

    Google Scholar 

  • Brasseur, G. P., & Solomon, S. (2005). Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere (3rd ed.). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Burgner, L. L., Weinberg, M. C., & Simmons, J. H. (2004). Early stage crystallization kinetics of lithium disilicate and sodium silicate glasses. Washington, DC, USA: U.S. Department of Energy. (Grant DE-FG03ER455000).

    Google Scholar 

  • Ding, Y., Jiang, S., Luo, T., Hu, Y., Miura, Y., & Peyghambarian, N. (1999). Lithium disilicate crystalline slab waveguides from surface crystallised glass. Electronic Letters, 35, 504–505. DOI: 10.1049/el:19990342.

    Article  CAS  Google Scholar 

  • Fokin, V.M., Zanotto, E. D., Yuritsyn, N. S., & Schmelzer, J.W. P. (2006). Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. Journal of Non-Crystalline Solids, 352, 2681–2714. DOI: 10.1016/j.jnoncrysol.2006.02.074.

    Article  CAS  Google Scholar 

  • Iqbal, Y., Lee, W. E., Holland, D., & James, P. F. (1999). Crystal nucleation in P2O5-doped lithium disilicate glasses. Journal of Materials Science, 34, 4399–4411, DOI: 10.1023/A: 1004668701163.

    Article  CAS  Google Scholar 

  • Kelton, K. F., Lakshmi Narayan, K., Levine, L. E., Cull, T. C., & Ray, C. S. (1996). Computer modeling of non-isothermal crystallization. Journal of Non-Crystalline Solids, 204, 13–31. DOI: 10.1016/0022-3093(96)00402-4.

    Article  CAS  Google Scholar 

  • Kocifaj, M., & Majling, J. (2011). Light scattering simulations relevant to crystallisation of lithiumdisilicate glass. Journal of Non-Crystalline Solids, 357, 1452–1454. DOI: 10.1016/j.jnoncrysol.2010.12.041.

    Article  CAS  Google Scholar 

  • Majling, J. (2005). Thermo-optical study of NaPO3 crystallization. Journal of Thermal Analysis and Calorimetry, 79, 727–730. DOI: 10.1007/s10973-005-0603-z.

    Article  Google Scholar 

  • Majling, J. (2003). Present status of the optical transmittance thermal analysis, a microstructure sensitive method. Solid State Phenomena, 90–91, 75–78. DOI: 10.4028/www.scientific.net/SSP.90-91.75.

    Article  Google Scholar 

  • Majling, J., Kremničan, V., Pach, L., & Chocholoušek, J. (2001). Thermo-optical investigation in transmitted light. High Temperatures-High Pressures, 33, 43–50. DOI: 10.1068/htwu395.

    Article  CAS  Google Scholar 

  • Minin, I. N. (1988). Theory of light propagation through planetary atmospheres. Moscow, Russia: Nauka. (in Russian)

    Google Scholar 

  • Ranasinghe, K. S., Wei, P. F., Kelton, K. F., Ray, C. S., & Day, D. E. (2004). Verification of an analytical method for measuring crystal nucleation rates in glasses from DTA data. Journal of Non-Crystalline Solids, 337, 261–267. DOI: 10.1016/j.jnoncrysol.2004.04.010.

    Article  CAS  Google Scholar 

  • Ray, C. S., Day, D. E., Huang, W., Lakshmi Narayan, K., Cull, T. S., & Kelton, K. F. (1996). Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. Journal of Non-Crystalline Solids, 204, 1–12. DOI: 10.1016/0022-3093(96)00401-2.

    Article  CAS  Google Scholar 

  • Roy, R. (2010). Glass science and glassmaking: A personal perspective. International Journal of Applied Glass Science, 1, 3–15. DOI: 10.1111/j.2041-1294.2010.00002.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Kocifaj.

Additional information

Dedicated to the memory of Prof. Rustum Roy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocifaj, M., Kovár, V. & Majling, J. Theoretical thermo-optical patterns relevant to glass crystallisation. Chem. Pap. 65, 490–494 (2011). https://doi.org/10.2478/s11696-011-0037-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0037-y

Keywords

Navigation