Skip to main content
Log in

Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Hybrid processes have received increased attention in the field of chemical and biochemical engineering because of their ability to overcome certain obstacles related to thermodynamics of the separation task to be carried out. Usually, in a hybrid process two processes are coupled; either reaction with separation or two different separation processes. In the design of such hybrid systems, the performance of each constituent element has to be taken into account, while their optimisation must account for their interdependency. In this paper, the methodology presented by Mitkowski et al. (2009a) is applied to design and analyse a hybrid process scheme for the synthesis of ethyl lactate. Generated hybrid process schemes have been validated through computer-aided simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T. A., II, & Seider, W. D. (2008). Semicontinuous distillation for ethyl lactate production. AIChE Journal, 54, 2539–2552. DOI: 10.1002/aic.11585.

    Article  CAS  Google Scholar 

  • Benedict, D. J., Parulekar, S. J., & Tsai, S. P. (2006). Pervaporation-assisted esterification of lactic and succinic acids with downstream ester recovery. Journal of Membrane Science, 281, 435–445. DOI: 10.1016/j.memsci.2006.04.012.

    Article  CAS  Google Scholar 

  • Benedict, D. J., Parulekar, S. J., & Tsai, S.-P. (2003). Esterification of lactic acid and ethanol with/without pervaporation. Industrial & Engineering Chemistry Research, 42, 2282–2291. DOI: 10.1021/ie020850i.

    Article  CAS  Google Scholar 

  • Blahušiak, M., Schlosser, Š., & Marták, J. (2010). Simulation of a hybrid fermentation-separation process for production of butyric acid. Chemical Papers, 64, 213–222. DOI: 10.2478/s11696-009-0114-7.

    Article  Google Scholar 

  • Buchaly, C., Kreis, P., & Górak, A. (2007). Hybrid separation processes-Combination of reactive distillation with membrane separation. Chemical Engineering and Processing, 46, 790–799. DOI: 10.1016/j.cep.2007.05.023.

    Article  CAS  Google Scholar 

  • CAPEC (Computer Aided Process Engineering Center) (2008). Integrated computer aided system (ICAS) (Manual delivered with ICAS software). Lyngby, Denmark: Technical University of Denmark.

    Google Scholar 

  • CAPEC (Computer Aided Process Engineering Center) (2002). ICAS documentations. Lyngby, Denmark: Technical University of Denmark. (CAPEC Internal Report, PEC02-14).

    Google Scholar 

  • Delgado, P., Sanz, M. T., & Beltrán, S. (2007a). Isobaric vapour-liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa. Fluid Phase Equilibria, 255, 17–23. DOI: 10.1016/j.fluid.2007.03.022.

    Article  CAS  Google Scholar 

  • Delgado, P., Sanz, M. T., & Beltrán, S. (2007b). Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chemical Engineering Journal, 126, 111–118. DOI: 10.1016/j.cej.2006.09.004.

    Article  CAS  Google Scholar 

  • Engin, A., Haluk, H., & Gurkan, K. (2003). Production of lactic acid esters catalyzed by heteropoly acid supported over ion-exchange resins. Green Chemistry, 5, 460–466. DOI: 10.1039/b303327a.

    Article  CAS  Google Scholar 

  • Gani, R., Hytoft, G., Jaksland, C., & Jensen, A. K. (1997). An integrated computer aided system for integrated design of chemical processes. Computers & Chemical Engineering, 21, 1135–1146. DOI: 10.1016/S0098-1354(96)00324-9.

    Article  CAS  Google Scholar 

  • Gani, R., Jiménez-González, C., & Constable, D. J. C. (2005). Method for selection of solvents for promotion of organic reactions. Computers & Chemical Engineering, 29, 1661–1676. DOI: 10.1016/j.compchemeng.2005.02.021.

    Article  CAS  Google Scholar 

  • Gani, R., & O’Connell, J. P. (1989). A knowledge based system for the selection of thermodynamic models. Computers & Chemical Engineering, 13, 397–404. DOI: 10.1016/0098-1354(89)85019-7.

    Article  CAS  Google Scholar 

  • Koszorz, Z., Nemestothy, N., Ziobrowski, Z., Belafi-Bako, K., & Krupiczka, R. (2004). Influence of pervaporation process parameters on enzymatic catalyst deactivation. Desalination, 162, 307–313. DOI: 10.1016/S0011-9164(04)00064-5.

    Article  CAS  Google Scholar 

  • Lipnizki, F., Field, R. W., & Ten, P.-K, (1999). Pervaporation-based hybrid process: a review of process design, applications and economics. Journal of Membrane Science, 153, 183–210. DOI: 10.1016/S0376-7388(98)00253-1.

    Article  CAS  Google Scholar 

  • Matouq, M., Tagawa, T., & Goto, S. (1994). Combined process for production of methyl tert-buthyl ether from tert-buthyl alcohol and methanol. Journal of Chemical Engineering of Japan, 27, 302–306. DOI: 10.1252/jcej.27.302.

    Article  CAS  Google Scholar 

  • Mihaľ, M., Švandovǎ, Z., & Markoš, J. (2010). Steady state and dynamic simulation of a hybrid reactive separation process. Chemical Papers, 64, 193–202. DOI: 10.2478/s11696-009-0110-y.

    Article  Google Scholar 

  • Mitkowski, P. T., Buchaly, C., Kreis, P., Jonsson, G., Górak, A., & Gani, R. (2009a). Computer aided design, analysis and experimental investigation of membrane assisted batch reaction-separation systems. Computers & Chemical Engineering, 33, 551–574. DOI: 10.1016/j.compchemeng.2008.07. 012.

    Article  CAS  Google Scholar 

  • Mitkowski, P. T., Gani, R., & Broniarz-Press, L. (2009b). Novel membrane database in chemical process design. In Proceedings of the 8th World Congress of Chemical Engineering, 23–27 August 2009 (Paper No. 687, pp. 1–6). Montreal, QC, Canada.

  • Mulder, M., (1996). Basic principles of membrane technology (2nd ed.). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Nielsen, T. L., Abildskov, J., Harper, P. M., Papaeconomou, I., & Gani, R. (2001). The CAPEC database. Journal of Chemical & Engineering Data, 46, 1041–1044. DOI: 10.1021/je000244z.

    Article  CAS  Google Scholar 

  • Parulekar, S. J. (2007). Analysis of pervaporation-aided esterification of organic acids. Industrial & Engineering Chemistry Research, 46, 8490–8504. DOI: 10.1021/ie061157o.

    Article  CAS  Google Scholar 

  • Pérez Cisneros, E. S., Gani, R., & Michelsen, M. L. (1997). Reactive separation systems—I. Computation of physical and chemical equilibrium. Chemical Engineering Science, 52, 527–543. DOI: 10.1016/S0009-2509(96)00424-1.

    Article  Google Scholar 

  • Sales-Cruz, M., & Gani, R. (2003). A modelling tool for different stages of the process life. In S. P. Asprey, & S. Macchietto (Eds.), Computer aided chemical engineering (Vol. 16, pp. 209–249). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S1570-7946(03)80076-7.

    Google Scholar 

  • Schmidt-Traub, H., & Górak, A. (2006). Integrated reaction and separation operations: Modelling and experimental operations. Berlin, Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Sigma-Aldrich (2010). Product catalog. Retrieved March 11, 2011, from www.sigmaaldrich.com

  • Van Baelen, D., Van der Bruggen, B., Van den Dungen, K., Degreve, J., & Vandecasteele, C. (2005). Pervaporation of water-alcohol mixtures and acetic acid-water mixtures. Chemical Engineering Science, 60, 1583–1590. DOI: 10.1016/j.ces.2004.10.030.

    Article  Google Scholar 

  • Vu, D. T., Lira, C. T., Asthana, N. S., Kolah, A. K., & Miller, D. J. (2006). Vapor-liquid equilibria in the systems ethyl lactate + ethanol and ethyl lactate + water. Journal of Chemical & Engineering Data, 51, 1220–1225. DOI: 10.1021/je050537y.

    Article  CAS  Google Scholar 

  • Whu, J. A., Baltzis, B. C., & Sirkar, K. K. (1999). Modelling of nanofiltration — assisted organic synthesis. Journal of Membrane Science, 163, 319–331. DOI: 10.1016/S0376-7388(99)00175-1.

    Article  CAS  Google Scholar 

  • Zhang, Y., Ma, L., & Yang, J. (2004). Kinetics of esterification of lactic acid with ethanol catalyzed by cation-exchange resins. Reactive and Functional Polymers, 61, 101–114, DOI: 10.1016/j.reactfunctpolym.2004.04.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr T. Mitkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitkowski, P.T. Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis. Chem. Pap. 65, 412–426 (2011). https://doi.org/10.2478/s11696-011-0036-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0036-z

Keywords

Navigation