Skip to main content
Log in

Anaerobic treatment of biodiesel by-products in a pilot scale reactor

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, long-term operation of a pilot scale mixed anaerobic reactor processing crude glycerol and rapeseed meal is discussed. These materials are generated as by-products of biodiesel production. Mixed reactor was operated under mesophilic conditions for the period of 654 days. Total cumulative production of biogas reached 379 m3 (at atmospheric pressure and ambient temperature). Maximum volumetric loading achieved during the operation was 2.17 kg m−3 d−1 for the crude glycerol dose of 2 L. When dosing crude glycerol as a single substrate, average specific production of biogas of 0.76 m3 per L of the g-phase was achieved. The lack of nutrients in the g-phase had to be compensated by an addition of ammonium nitrogen in the form of urea into the reactor. Long term processing of crude glycerol demonstrated that accumulation of dissolved inorganic salts in the reactor can lead to inhibition of the methanogenic activity of microorganisms, causing breakdown of the system. Co-fermentation of crude glycerol with rapeseed meal provided stable biogas production and it was shown to be a feasible way of anaerobic degradation of these substrates. At the maximum volumetric load of 1.33 kg m−3 d−1 (500 mL of g-phase and 500 g of rapeseed meal), the average biogas production reached 0.58 m3 d−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (1999). Standard methods for the examination of water and wastewater. Washington, DC, USA: APHA.

    Google Scholar 

  • Bernesson, S. (2007). Fields of application for the by-products of extraction and transesterification of rapeseed oil. Uppsala, Sweden: Swedish University of Agricultural Sciences. (Tech. Rep. 1652-3237).

    Google Scholar 

  • Bodík, I., Hutňan, M., Petheöová, T., & Kalina, A. (2008). Anaerobic treatment of biodiesel production wastes. In Proceedings of the 5th International Symposium on Anaerobic Digestion of Solid Wastes and Energy Crops, 25–28 May 2008 (CD-Rom). Hammamet, Tunis.

  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044–4064. DOI: 10.1016/j.biortech.2007.01.057.

    Article  CAS  Google Scholar 

  • Fountoulakis, M. S., & Manios, T. (2009). Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresource Technology, 100, 3043–3047. DOI: 10.1016/j.biortech.2009.01.016.

    Article  CAS  Google Scholar 

  • Hutňan, M., Kolesárová, N., Bodík, I., Špalkov M. (2009). Possibilities of anaerobic treatment of crude glycerol from biodiesel production. In J. Markoš (Ed.), Proceedings of the 36th International Conference of the Slovak Society of Chemical Engineering, 25–29 May 2009 (L. 156). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Janaun, J., & Ellis, N. (2010). Perspectives on biodiesel as a sustainable fuel. Renewable and Sustainable Energy Reviews, 14, 1312–1320. DOI: 10.1016/j.rser.2009.12.011.

    Article  CAS  Google Scholar 

  • Kocsisová, T., & Cvengroš, J. (2006). G-phase form methyl ester production - splitting and refining. Petroleum & Coal, 48, 1–5.

    Google Scholar 

  • Kolesárová, N., Hutňan, M., & Špalková, V. (2010). Anaerobic degradation of rapeseed meal. In Proceedings of 24th Conference Sludge and Wastes 2010, 23–24 June 2010 (pp. 219–222). Brno, Czech Republic: Asociace pro vodu ČR. (in Slovak)

    Google Scholar 

  • Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research, 40, 3671–3682. DOI: 10.1016/j.watres.2006.08.027.

    Article  CAS  Google Scholar 

  • Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083–1095. DOI: 10.1016/j.apenergy.2009.10.006.

    Article  CAS  Google Scholar 

  • Ma, J., Van Wambeke, M., Carballa, M., & Verstraete, W. (2008). Improvement of the anaerobic treatment of potato processing wastewater in a UASB reactor by co-digestion with glycerol. Biotechnology Letters, 30, 861–867. DOI: 10.1007/s10529-007-9617-x.

    Article  CAS  Google Scholar 

  • Ramachandran, S., Singh, S. K., Larroche, C., Soccol, C. R., & Pandey, A. (2007). Oil cakes and their biotechnological applications — A review. Bioresource Technology, 98, 2000–2009. DOI: 10.1016/j.biortech.2006.08.002.

    Article  CAS  Google Scholar 

  • Siles López, J. Á., Martín Santos, M. Á., Chica Pérez, A. F., Martín Martín, A. (2009). Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresource Technology, 100, 5609–5615. DOI: 10.1016/j.biortech.2009.06.017.

    Article  Google Scholar 

  • Singhabhandhu, A., & Tezuka, T. (2010). A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy, 35, 2493–2504. DOI: 10.1016/j.energy.2010.02.047.

    Article  CAS  Google Scholar 

  • Špalkovňan, M., Lazor, M., & Kolesárová, N. (2009). Selected problems of anaerobic treatment of maize silage. In J. Markoš (Ed.), Proceedings of the 36th International Conference of the Slovak Society of Chemical Engineering, 25–29 May 2009 (L. 157). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Thompson, J. C., & He, B. B. (2006). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22, 261–265.

    Google Scholar 

  • Vyrides, I., & Stuckey, D. C. (2009). Adaptation of anaerobic biomass to saline conditions: Role of compatible solutes and extracellular polysacharides. Enzyme and Microbial Technology, 44, 46–51. DOI: 10.1016/j.enzmictec.2008.09.008.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, Y., Wang, J., & Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy, 33, 848–853. DOI: 10.1016/j.biombioe.2009.01.007.

    Article  CAS  Google Scholar 

  • Yang, Y., Tsukahara, K., & Sawayama, S. (2008). Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Process Biochemistry, 43, 362–367. DOI: 10.1016/j.procbio.2007.12.015.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kolesárová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesárová, N., Hutňan, M., Špalková, V. et al. Anaerobic treatment of biodiesel by-products in a pilot scale reactor. Chem. Pap. 65, 447–453 (2011). https://doi.org/10.2478/s11696-011-0035-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0035-0

Keywords

Navigation