Skip to main content
Log in

Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An enhanced chemical denitrification process was studied as an alternative treatment of nitrate-rich wastewater which cannot be easily treated using conventional biological methods. To accelerate denitrification and to reduce the conversion to ammonia, nitrite reductants were added. In a batch test with the initial nitrate concentration of 500 mg NO 3 -N per L, sulfamic acid and zinc were found to be the best nitrite and metal reductants, respectively. In a column test with the initial nitrate concentration of 500 mg NO 3 -N per L, optimum results were experimentally obtained over a zinc scrap column with a 1.0 molar ratio of [NH2SO3H]/[NO 3 -N] and the recirculating flow rate of 6 L min−1 at pH 2.5. Approximately 98.8 % of nitrate anions were removed, and the observed reaction rate constant (k) was 0.135 min−1. Zinc consumption was reduced to 46.6 % compared to the procedure without sulfamic acid, and sulfamic acid consumption was reduced to 40 % compared to the results of our previous study. Based on these experimental results, it was concluded that chemical nitrate denitrification using sulfamic acid and zinc scrap is an effective alternative treatment protocol for nitrate-rich wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S. C., Oh, S.-Y., & Cha, D. K. (2008). Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. Journal of Hazardous Materials, 156, 17–22. DOI: 10.1016/j.jhazmat.2007.11.104.

    Article  CAS  Google Scholar 

  • Alibaba.com (2011). Global trade. Retrieved January 18, 2011, from http://www.alibaba.com/

  • APHA-AWWA-WEF (1998). 4500-NH3 Nitrogen (Ammonia). In L. S. Clescerl, A. E. Greenber, & A. D. Eaton (Eds.), Standard methods for the examination of water and wastewater (20th ed., pp. 4-103–4-106). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  • Carson, W. N., Jr. (1951). Gasometric determination of nitrite and sulfamate. Analytical Chemistry, 23, 1016–1019. DOI: 10.1021/ac60055a026.

    Article  CAS  Google Scholar 

  • Craig, J. A., & Holm, R. H. (1989). Reduction of nitrate to nitrite by molybdenum-mediated atom transfer: A nitrate reductase analog reaction system. Journal of the American Chemical Society, 111, 2111–2115. DOI: 10.1021/ja00188a026.

    Article  CAS  Google Scholar 

  • Dash, B. P., & Chaudhari, S. (2005). Electrochemical denitrification of simulated ground water. Water Research, 39, 4065–4072. DOI: 10.1016/j.watres.2005.07.032.

    Article  CAS  Google Scholar 

  • EPA (2002). The national nitrate compliance initiative, EPA 300-R-02-003 (pp. 5–7). Washington, DC, USA: United States Environmental Protection Agency.

    Google Scholar 

  • Fanning, J. C. (2000). The chemical reduction of nitrate in aqueous solution. Coordination Chemistry Reviews, 199, 159–179. DOI: 10.1016/S0010-8545(99)00143-5.

    Article  CAS  Google Scholar 

  • Flores, A. S. P., III, Gwon, E.-M., Sim, D.-M., Nisola, G., Galera, M. M., Chon, S.-S., Chung, W.-J., Pak, D.-W., & Ahn, Z. S. (2006). Performance evaluation of pilot scale sulfur-oxidizing denitrification for treatment of metal plating wastewater. Journal of Environmental Science Health, Part A, 41, 101–116. DOI: 10.1080/10934520500299604.

    Article  CAS  Google Scholar 

  • Huang, C.-P., Wang, H.-W., & Chiu, P.-C. (1998). Nitrate reduction by metallic iron. Water Research, 32, 2257–2264. DOI: 10.1016/S0043-1354(97)00464-8.

    Article  CAS  Google Scholar 

  • Huang, Y. H., & Zhang, T. C. (2004). Effects of low pH on nitrate reduction by iron powder. Water Research, 38, 2631–2642. DOI: 10.1016/j.watres.2004.03.015.

    Article  CAS  Google Scholar 

  • Kappor, A., & Viraraghavan, T. (1997). Nitrate removal from drinking water-review. Journal of Environmental Engineering-ASCE, 123, 371–380. DOI: 10.1061/(ASCE)0733-9372(1997)123:4(371).

    Article  Google Scholar 

  • Lee, S., Maken, S., Jang, J.-H., Park, K., & Park, J.-W. (2006). Development of physicochemical nitrogen removal process for high strength industrial wastewater. Water Research, 40, 975–980. DOI: 10.1016/j.watres.2006.01.018.

    Article  CAS  Google Scholar 

  • Liao, C.-H., Kang, S.-S., & Hsu, Y.-W. (2003). Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research, 37, 4109–4118. DOI: 10.1016/S0043-1354(03)00248-3.

    Article  CAS  Google Scholar 

  • Luk, G. K., & Au-Yeung, W. C. (2002). Experimental investigation on the chemical reduction of nitrate from groundwater. Advances in Environmental Research, 6, 441–453. DOI: 10.1016/S1093-0191(01)00072-7.

    Article  CAS  Google Scholar 

  • Nikonorov, V. V., & Belyanskaya, T. A. (2000). Comparative study of various methods of the heterogeneous reduction of nitrate ions. Journal of Analytical Chemistry, 55, 116–120. DOI: 10.1007/BF02757734.

    Article  CAS  Google Scholar 

  • Pintar, A. (2003). Catalytic processes for the purification of drinking water and industrial effluents. Catalysis Today, 77, 451–465. DOI: 10.1016/S0920-5861(02)00385-1.

    Article  CAS  Google Scholar 

  • Prüsse, U., Hähnlein, M., Daum, J., & Vorlop, K.-D. (2000). Improving the catalytic nitrate reduction. Catalysis Today, 55, 79–90 DOI: 10.1016/S0920-5861(99)00228-X.

    Article  Google Scholar 

  • Ruangchainikom, C., Liao, C.-H., Anotai, J., & Lee, M.-T. (2006). Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO2-bubbled system. Water Research, 40, 195–204. DOI: 10.1016/j.watres.2005.09.047.

    Article  CAS  Google Scholar 

  • Siantar, D. P., Schreier, C. G., Chou, C.-S., & Reinhard, M. (1996). Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Research, 30, 2315–2322. DOI: 10.1016/0043-1354(96)00120-0.

    Article  CAS  Google Scholar 

  • Stolwijk, P., & Van Haute, A. (1976). Theorie en praktijk van de ammoniakverwijdering uit afvalwater langs fysischchemische weg. H 2 O, 9, 338–334.

    Google Scholar 

  • Thalasso, F., Vallencillo, A., García-Encina, P., & Fdz-Polanco, F. (1997). The use of methane as a sole carbon source for wastewater denitrification. Water Research, 31, 55–66. DOI: 10.1016/S0043-1354(96)00228-X.

    Article  CAS  Google Scholar 

  • Tsai, W. L., Hsu, P. C., Hwu, Y., Chen, C. H., Chang, L. W., & Margaritondo, G. (2003). Real-time observation of Zn electro-deposition with high-resolution microradiology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 199, 451–456. DOI: 10.1016/S0168-583X(02)01541-0.

    Article  CAS  Google Scholar 

  • Wang, Y., Qu, J., Wu, R., & Lei, P. (2006). The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode. Water Research, 40, 1224–1232. DOI: 10.1016/j.watres.2006.01.017.

    Article  CAS  Google Scholar 

  • Westerhoff, P. (2003). Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0). Journal of Environmental Engineering, 129, 10–16. DOI: 10.1061/(ASCE)0733-9372(2003)129:1(10).

    Article  CAS  Google Scholar 

  • West, J. M. (1970). Electrodeposition and corrosion processes (2nd ed.). London, UK: Van Nostrand Reinhold.

    Google Scholar 

  • WHO (1998). Guidelines for drinking water quality (2nd ed.), Addendum to Vol. 1: Recommendations. Geneva, Switzerland: World Health Organization.

    Google Scholar 

  • Xing, X., Scherson, D. A., & Mak, D. (1990). The electrocatalytic reduction of nitrate mediated by underpotentialdeposited cadmium on gold and silver electrodes in acid media. Journal of the Electrochemical Society, 137, 2166–2175. DOI: 10.1149/1.2086905.

    Article  CAS  Google Scholar 

  • Yang, G. C. C., & Lee, H.-L. (2005). Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research, 39, 884–894. DOI: 10.1016/j.watres.2004.11.030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, JH., Gaur, A., Song, HJ. et al. Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap. Chem. Pap. 65, 437–446 (2011). https://doi.org/10.2478/s11696-011-0029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0029-y

Keywords

Navigation