Skip to main content
Log in

An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An efficient, convenient, and novel one-pot method of 2,4,5-triaryl-1H-imidazoles synthesis using benzil, arene carbaldehydes, and ammonium acetate, catalyzed by uranyl nitrate hexahydrate [UO2(NO3)2·6H2O] supported on acidic alumina and resulting in good to excellent yields under heterogeneous conditions, is reported. Formation of a reactants-catalyst complex was confirmed by UV-VIS spectral data. Antibacterial (MIC) and antioxidant activity of the synthesized compounds was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellina, F., Cauteruccio, S., & Rossi, R. (2007). Synthesis and biological activity of vicinal diaryl-substituted 1-H-imidazoles. Tetrahedron, 63, 4571–4624. DOI: 10.1016/j.tet.2007.02.075.

    Article  CAS  Google Scholar 

  • Blokhin, V. E., Gryazev, V. F., Tabachnik, I. E., Rozin, Y. A., Surovtsev, L. G., & Kalakutskii, B. T. (1979). Synthesis and properties of 2-styryl-4,5-diarylimidazoles. Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya, 22, 287–289.

    CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT — Food Science and Technology, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.

    Article  CAS  Google Scholar 

  • Clark, N. G., & Cawkill, E. (1975). The reaction between cyanide ion and nitrones a novel imidazole synthesis. Tetrahedron Letters, 16, 2717–2720. DOI: 10.1016/S0040-4039(00)75222-1.

    Article  Google Scholar 

  • Cozzi, P., Carganico, G., Fusar, D., Grossoni, M., Menichincheri, M., Pinciroli, V., Tonani, R., Vaghi, F., & Salvati, P. (1993). Imidazol-1-yl and pyridin-3-yl derivatives of 4-phenyl-1,4-dihydropyridines combining Ca2+ antagonism and thromboxane A2 synthase inhibition. Journal of Medicinal Chemistry, 36, 2964–2972. DOI: 10.1021/jm00072a017.

    Article  CAS  Google Scholar 

  • Drabu, S., Kumar, N., & Munirajan, S. (2005). Synthesis and antiinflammatory activity of some 3-substituted indolo[2,3]imidazoles. Indian Journal of Heterocyclic Chemistry, 15, 195–196.

    CAS  Google Scholar 

  • Florey, H. W., Chain, E., & Florey, M. E. (1989). The antibiotic (Vol. I, pp. 576–628). New York, NY, USA: Oxford University Press.

    Google Scholar 

  • Frantz, D. E., Morency, L., Soheili, A., Murry, J. A., Grabowski, E. J. J., & Tillyer, R. D. (2004). Synthesis of substituted imidazoles via organocatalysis. Organic Letters, 6, 843–846. DOI: 10.1021/ol0498803.

    Article  CAS  Google Scholar 

  • Giordano, C., & Belli, A. (1975). Heterocycles by α-thioamidoalkylation of unsaturated compounds. Part VI. 6H-1,3,5-oxathiazines. Synthesis, 1975, 789–791. DOI: 10.1055/s-1975-23928.

  • Harfenist, M., Soroko, F. E., & McKenzie, G. M. (1978). 2-(Alkoxyaryl)-2-imidazoline monoamine oxidase inhibitors with anitdepressant activity. Journal of Medicinal Chemistry, 21, 405–409. DOI: 10.1021/jm00202a021.

    Article  CAS  Google Scholar 

  • Heravi, M. M., Bakhtiari, K., Oskooie, H. A., & Taheri, S. (2007a). Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl2·6H2O under heterogeneous system. Journal of Molecular Catalysis A: Chemical, 263, 279–281. DOI: 10.1016/j.molcata.2006.08.070.

    Article  CAS  Google Scholar 

  • Heravi, M. M., Derikvand, F., & Bamoharram, F. F. (2007b). Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. Journal of Molecular Catalysis A: Chemistry, 263, 112–114. DOI: 10.1016/j.molcata.2006.08.048.

    Article  CAS  Google Scholar 

  • Hofmann, K. (1953). Imidazole and its derivatives. Part I. New York, NY, USA: Interscience Publishers.

    Google Scholar 

  • Işikdağ, I., & Meriç, A. (1999). Syntheses and analgesic activities of some 2-substituted-4,5-diphenyl and 1,2-disubstituted-4,5-diphenyl imidazole derivatives. Bollettino Chimico Farmaceutico, 138, 24–29.

    Google Scholar 

  • Jadhav, S. D., Kokare, N. D., & Jadhav, S. D. (2008). Phosphomolybdic acid catalyzed facile one-pot synthesis of 2,4,5-triaryl-1H-imidazoles from benzil and aromatic aldehydes. Journal of Heterocyclic Chemistry, 45, 1461–1464. DOI: 10.1002/jhet.5570450533.

    Article  CAS  Google Scholar 

  • Khosropour, A. R. (2008). Ultrasound-promoted greener synthesis of 2,4,5-trisubstituted imidazoles catalyzed by Zr(acac)4 under ambient conditions. Ultrasonics Sonochemistry, 15, 659–664. DOI: 10.1016/j.ultsonch.2007.12.005.

    Article  CAS  Google Scholar 

  • Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S., & Singh, T. P. (2007). One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. Journal of Molecular Catalysis A: Chemical, 265, 177–182. DOI: 10.1016/j.molcata.2006.10.009.

    Article  CAS  Google Scholar 

  • Li, J., Lin, S., Dai, J., & Su, W. (2010). L-Proline triflate as an efficient and reusable catalyst for the one-pot synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles. Journal of Chemical Research, 34, 196–199. DOI: 10.3184/030823410X12698803608765.

    Article  CAS  Google Scholar 

  • Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L., & Zhang, H. (2003). A modified procedure for the synthesis of 1-arylimidazoles. Synthesis, 2003, 2661–2666. DOI: 10.1055/s-2003-42444.

    Google Scholar 

  • Lombardino, J. G., & Wiseman, E. H. (1974). Preparation and antiinflammatory activity of some nonacidic tristubstituted imidazoles. Journal of Medicinal Chemistry, 17, 1182–1188. DOI: 10.1021/jm00257a011.

    Article  CAS  Google Scholar 

  • Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Bürstell, H., & Sachse, B. (1989). 1-Substituted imidazole-5-carboxylic acid derivatives, their preparation and their use as biocides. U.S. Patent No. 4820335. Washington, D.C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Meenakshi, S., Reenakalsi, Renusah, Dixit, K. S., Nath, C., & Barthwal, J. P. (1990). Synthesis, anticonvulsant and enzyme-inhibitory activities of some indolyl-1,3,4-thiadiazoles. Indian Journal of Chemistry B, 29B, 85–87.

    Google Scholar 

  • Mohan, J., & Kumar, A. (2002). Condensed bridgehead nitrogen heterocyclic systems: Facile synthesis and antimicrobial activity of imidazo[2,1-b]-1,3,4-thiadiazoles. Indian Journal of Heterocyclic Chemistry, 12, 41–44.

    CAS  Google Scholar 

  • Murthy, S. N., Madhav, B., & Nageswar, Y. V. D. (2010). DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazoles via multi-component condensation strategy. Tetrahedron Letters, 51, 5252–5257. DOI: 10.1016/j.tetlet.2010.07.128.

    Article  CAS  Google Scholar 

  • Nagalakshmi, G. (2008). Synthesis and pharmacological evaluation of 2-(4-halosubstituted phenyl)-4,5-diphenyl-1H-imidazoles. E-Journal of Chemistry, 5, 447–452.

    CAS  Google Scholar 

  • Renukadevi, P., Biradar, J. S., Hiremath, S. P., & Manjunath, S. Y. (1997). Synthesis and antibacterial activity of 1,2-disubstituted 4-[(5-substituted 2-phenylindol-3-yl)methylene] imidazolin-5-(4H)-ones. Indian Journal of Heterocyclic Chemistry, 6, 277–280.

    Google Scholar 

  • Samai, S., Nandi, G. C., Singh, P., & Singh, M. S. (2009). LProline: an efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron, 65, 10155–10161. DOI: 10.1016/j.tet.2009.10.019.

    Article  CAS  Google Scholar 

  • Sangshetti, J. N., Kokare, N. D., Kotharkar, S. A., & Shinde, D. B. (2008). ZrOCl2·8H2O catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles and substituted 1,4-di(4,5-diphenylimidazol-yl)benzene. Chinese Chemical Letters, 19, 762–766. DOI: 10.1016/j.cclet.2008.05.007.

    Article  CAS  Google Scholar 

  • Sarshar, S., Siev, D., & Mjalli, A. M. M. (1996). Imidazole libraries on solid support. Tetrahedron Letters, 37, 835–838. DOI: 10.1016/0040-4039(95)02334-8.

    Article  CAS  Google Scholar 

  • Shaabani, A., Maleki, A., & Behnam, M. (2009). Tandem oxidation process using ceric ammonium nitrate: three-component synthesis of trisubstituted imidazoles under aerobic oxidation conditions. Synthetic Communications, 39, 102–110. DOI: 10.1080/00397910802369661.

    Article  CAS  Google Scholar 

  • Shaabani, A., Rahmati, A., Farhangi, E., & Badri, Z. (2007). Silica sulfuric acid promoted the one-pot synthesis of trisubstituted imidazoles under conventional heating conditions or using microwave irradiation. Catalysis Communications, 8, 1149–1152. DOI: 10.1016/j.catcom.2006.10.035.

    Article  CAS  Google Scholar 

  • Sharma, S. D., Hazarika, P., & Konwar, D. (2008). An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O. Tetrahedron Letters, 49, 2216–2220. DOI: 10.1016/j.tetlet.2008.02.053.

    Article  Google Scholar 

  • Shealy, Y. E., Montgomery, J. A., & Laster, W. R., Jr. (1962). Antitumor activity of triazenoimidazoles. Biochemical Pharmacology, 11, 674–676. DOI: 10.1016/0006-2952(62)90130-2.

    Article  CAS  Google Scholar 

  • Shelke, K. F., Sapkal, S. B., & Shingare, M. S. (2009). Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. Chinese Chemical Letters, 20, 283–287. DOI: 10.1016/j.cclet.2008.11.033.

    Article  CAS  Google Scholar 

  • Shen, M.-G., Cai, C., & Yi, W.-B. (2008). Ytterbium perfluorooctanesulfonate as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. Journal of Fluorine Chemistry, 129, 541–544. DOI: 10.1016/j.jfluchem.2008.03.009.

    Article  CAS  Google Scholar 

  • Siddiqui, S. A., Narkhede, U. C., Palimkar, S. S., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2005). Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron, 61, 3539–3546. DOI: 10.1016/j.tet.2005.01.116.

    Article  CAS  Google Scholar 

  • Song, D., Liu, C., Zhang, S., & Luo, G. (2010). One-pot synthesis of 2,4,5-triarylimidazoles catalyzed by copper(II) trifluoroacetate under solvent-free conditions. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40, 145–147. DOI: 10.1080/15533171003629055.

    CAS  Google Scholar 

  • Sparks, R. B., & Combs, A. P. (2004). Microwave-assisted synthesis of 2,4,5-triaryl-imidazole; a novel thermally induced N-hydroxyimidazole N-O bond cleavage. Organic Letters, 6, 2473–2475. DOI: 10.1021/ol049124x.

    Article  CAS  Google Scholar 

  • Tepe, B., Sokmen, M., Akpulat, H. A., & Sokmen, A. (2006). Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chemistry, 95, 200–204. DOI: 10.1016/j.foodchem.2004.12.031.

    Article  CAS  Google Scholar 

  • Usyatinsky, A. Y., & Khmelnitsky, Y. L. (2000). Microwaveassisted synthesis of substituted imidazoles on a solid support under solvent-free conditions. Tetrahedron Letters, 41, 5031–5034. DOI: 10.1016/S0040-4039(00)00771-1.

    Article  CAS  Google Scholar 

  • Wang, L.-M., Wang, Y.-H., Tian, H., Yao, Y.-F., Shao, J.-H., & Liu, B. (2006). Ytterbium triflate as an efficient catalyst for one-pot synthesis of substituted imidazoles through three-component condensation of benzil, aldehydes and ammonium acetate. Journal of Fluorine Chemistry, 127, 1570–1573. DOI: 10.1016/j.jfluchem.2006.08.005.

    Article  CAS  Google Scholar 

  • Weinmann, H., Harre, M., Koeing, K., Merten, E., & Tilstam, U. (2002). Efficient and environmentally friendly synthesis of 2-amino-imidazole. Tetrahedron Letters, 43, 593–595. DOI: 10.1016/S0040-4039(01)02226-2.

    Article  CAS  Google Scholar 

  • Xia, M., & Lu, Y.-D. (2007). A novel neutral ionic liquidcatalyzed solvent-free synthesis of 2,4,5-trisubstituted imidazoles under microwave irradiation. Journal of Molecular Catalysis A: Chemistry, 265, 205–208. DOI: 10.1016/j.molcata.2006.10.004.

    Article  CAS  Google Scholar 

  • Xu, Y., Wan, L.-F., Salehi, H., Deng, W., & Guo, Q.-X. (2004). Microwave-assisted one-pot synthesis of tri-substituted imidazoles on solid support. Heterocycles, 63, 1613–1618. DOI: 10.3987/COM-04-10045.

    Article  CAS  Google Scholar 

  • Zhou, J.-F., Gong, G.-X., Sun, X.-J., & Zhu, Y.-L. (2010). Facile method for one-step synthesis of 2,4,5-triarylimidazoles under catalyst-free, solvent-free, and microwave-irradiation conditions. Synthetic Communications, 40, 1134–1141. DOI: 10.1080/00397910903043025.

    Article  CAS  Google Scholar 

  • Zhou, J.-F., Song, Y.-Z., Yang, Y.-L., Zhu, Y.-L., & Tu, S.-J. (2005). One-step synthesis of 2-aryl-4,5-diphenylimidazoles under microwave irradiation. Synthetic Communications, 35, 1369–1373. DOI: 10.1081/SCC-200057281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaravadi Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satyanarayana, V.S.V., Sivakumar, A. An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions. Chem. Pap. 65, 519–526 (2011). https://doi.org/10.2478/s11696-011-0028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0028-z

Keywords

Navigation