Skip to main content

Advertisement

Log in

An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

p-Aminobenzene sulfonamide (sulfanilamide, SN) is the simplest and most-used sulfonamide medicine. The key step of SN production via the commonly used chlorosulfonic acid routine is the synthesis of p-acetaminobenzenesulfonyl chloride (P-ASC). A large amount of HSO3Cl has to be used in the traditional process, which results in serious environmental problems. In this study, an alternative chlorosulfonic acid process to synthesize P-ASC was investigated by partially substituting HSO3Cl by PCl5 as the chlorination agent. Compared with the traditional process, the molar ratio of HSO3Cl to acetanilide (the main raw material) can be decreased from 4.96 to 2.1 using CCl4 as the diluent; also, addition of a small amount of NH4Cl was found to significantly increase the P-ASC yield. Operating conditions of the reaction were studied first by single-factor experiments and later by orthogonal experiments to obtain optimum operating conditions under which the P-ASC yield can reach as high as 86.3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boekman, F., Bohman, O., & Siegbahn, H. O. G. (1992). ESCA studies of phase transfer catalysts in solution. 2. Surface ion pairing and salting-out effects. The Journal of Physical Chemistry, 96, 2278–2283. DOI: 10.1021/j100184a047.

    Article  CAS  Google Scholar 

  • Castaner, J., Riera, J., Carilla=., J., Robert, A, Molins, E., & Miravitlles, C. (1991). A new trifluoromethylating agent: synthesis of polychlorinated (trifluoromethyl)benzenes and 1,3-bis(trifluoromethyl)benzenes and conversion into their trichloromethyl counterparts and molecular structure of highly strained polychloro-m-xylenes. The Journal of the Organic Chemistry, 56, 103–110. DOI: 10.1021/jo00001a022.

    Article  CAS  Google Scholar 

  • Emerson, D. W., & Ifalade, S. O. (2005). Improved preparation of macroporous, chlorosulfonated poly(styrene-codivinylbenzene) and conversion to sulfonamides and sulfonylhydrazines. Industrial & Engineering Chemistry Research, 44, 7045–7048. DOI: 10.1021/ie050371u.

    Article  CAS  Google Scholar 

  • Fan, X., Wang, J. G., & Wang, J. P. (2005). Optimum semimicro synthesis of P-aminobenzene sulfonamide. Journal of Luoyang Normal Univiversity, 2, 133–135.

    Google Scholar 

  • Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R., & Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews Drug Discovery, 3, 509–520. DOI: 10.1038/nrd1416.

    Article  CAS  Google Scholar 

  • Galat, A. (1944). New processes for sulfanilamide. Industrial & Engineering Chemistry, 36, 192. DOI: 10.1021/ie50410a023.

    Article  CAS  Google Scholar 

  • Gao, F., Wang, Y., & Zeng, Y. (2002). New process study on sulfanilamide synthesis by chlorobenzene. Chemical Production and Technology, 9, 4–6.

    Google Scholar 

  • Huang, Z., Lin, Z., & Huang, J. (2001). A novel kind of antitumour drugs using sulfonamide as parent compound. European Journal of Medicinal Chemistry, 36, 863–872. DOI: 10.1016/S0223-5234(01)80002-7.

    Article  CAS  Google Scholar 

  • Kealey, D., & Haines, P. J. (2002). BIOS instant notes in analytical chemistry. New York, NY, USA: Taylor & Francis.

    Google Scholar 

  • Kong, X., Teng, Y., & Zhang, T. (1998). Synthesis of pacetamidobenzene sulfone chloride. Journal of Shenyang Institute of Chemical Technology, 12, 117–121.

    CAS  Google Scholar 

  • Li, G., Liu, J., & Li, J. (2007). Improved synthetic technology for the organic dye intermediate: p-acetamidobenzene sulfonyl chloride. Journal of Henan Normal University (Natural Science), 35, 182–184.

    CAS  Google Scholar 

  • Li, P. (2002). Treatment of waste acid in chlorosulfonic acid production process. Chemical Intermediates, 17, 15–16.

    Google Scholar 

  • Li, Y., & Hu, C. (2005). Experimental design and data analysis. Beijing, China: Chemical Industry Press.

    Google Scholar 

  • Lin, X., Wei, R.-Q., Liu, X.-N., & Zhou, R. (2009). Study on the function group uniformity of polystyrol sulfonyl chloride resins by infrared spectra. Spectroscopy and Spectral Analysis, 29, 1801–1804. DOI: 10.3964/j.issn.1000-0593(2009)07-1801-04.

    CAS  Google Scholar 

  • Martin, H., Gysin, H., Neracher, O., & Hirt, R. (1943). U.S. Patent No. 243,5974. Washington, D.C.: U.S. Patent and Trademark Office.

  • Martin. H., & Hirt, R. (1947). U.S. Patent No. 242,9207. Washington, D.C.: U.S. Patent and Trademark Office.

  • Meier, M., & Tronich, W. (1992). U.S. Patent No. 513,6043. Washington, D.C.: U.S. Patent and Trademark Office.

  • Meng, G. (1995). Improvement for the synthesis and purification of p-acetate-amino-benzene-sulfonyl chloride. Jounal of Henan Normal University (Medical Science), 14, 179–180.

    Google Scholar 

  • Montgomery, D. C. (2004). Design and analysis of experiments (6th Ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Moore, R. M., Jr. (2003). A convenient synthesis of high-purity 1-chloro-2,6-difluorobenzene. Organic Process Research & Development, 7, 921–924. DOI: 10.1021/op0340816.

    Article  CAS  Google Scholar 

  • Pence, L. H., & Winter, H. C. (1939). Purification of pacetaminobenzenesulfonyl chloride. Journal of the American Chemical Society, 61, 2977–2978. DOI: 10.1021/ja01265a509.

    Article  CAS  Google Scholar 

  • Pouchert, C. J. (1970). The Aldrich library of infrared spectra. Milwaukee, WI, USA: Aldrich Chemical Co Inc.

    Google Scholar 

  • Smiles, S., & Stewart, J. (1925). p-Acetaminobenzenesulfonyl chloride. Organic Syntheses, 5, 1.

    Google Scholar 

  • Song, B. (1990). New process for acetanilide chlorosulfonation. Tianjin Chemical Industry, 2, 24–29.

    Google Scholar 

  • Su, Y., & Hao, Y. (2005). Improved technology for synthesis of p-acetylsulfanilamide. Journal Hebei Normal University (Natural Science Edition), 29, 58–60.

    CAS  Google Scholar 

  • Su, Y., & Yang, J. (2002). Improved technology for synthesis of p-acetamidobenzenesulfonyl chloride. Journal Hebei Normal University (Natural Science Edition), 26, 162–164.

    CAS  Google Scholar 

  • Xin, J.-F., Ma, J.-H., Zhang, S.-F., Chen, S.-R., & Li, H.-Y. (2006). Review of the methods of preparing acyl chlorides. Hebei Chemical Engineering Industry, 29, 16–18.

    CAS  Google Scholar 

  • Zeng, Z. (1981). Organic chemical experiments. Beijing, China: People’s Education Press.

    Google Scholar 

  • Zhang, S. (1991). Handbook of fine organic chemical technology. Beijing, China: Science Press.

    Google Scholar 

  • Zhao, Z., Wolkenberg, S. E., Lu, M., Munshi, V., Moyer, G., Feng, M., Carella, A. V., Ecto, L. T., Gabryelski, L. J., Lai, M.-T., Prasad, S. G., Yan, Y., McGaughey, G. B., Miller, M. D., Lindsley, C. W., Hartman, G. D., Vacca, J. P., & Williams, T. M. (2008). Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Bioorganic & Medicinal Chemistry Letters, 18, 554–559. DOI: 10.1016/j.bmcl.2007.11.085.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S., Yang, Y., Luo, Z. et al. An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5 . Chem. Pap. 65, 510–518 (2011). https://doi.org/10.2478/s11696-011-0026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0026-1

Keywords

Navigation