Skip to main content
Log in

Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives

  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polycondensation reactions of phenols with phthalic anhydride were carried out in the presence of ferric hydrogensulphate under melt conditions. The reactions proceeded in short reaction times by using a catalytic amount of Fe(HSO4)3 and the corresponding fluorescein derivatives were obtained in high yields. The simplicity, scale-up, along with the use of an inexpensive, non-toxic, recyclable catalyst of an environmentally benign nature, are other remarkable features of the procedure. The absorption and emission properties of these fluorescein derivatives were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cihelník, S., Stibor, I., & Lhoták, P. (2002). Solvent-free synthesis of sulfonephthaleins, sulfonefluoresceins and fluoresceins under microwave irradiation. Collection of Czechoslovak Chemical Communications, 67, 1779–1789. DOI: 10.1135/cccc20021779.

    Article  Google Scholar 

  • Eshghi, H. (2006). Ferric hydrogensulfate catalysed Schmidt reaction of ketones to amides under solvent-free conditions. Journal of the Chinese Chemical Society, 53, 987–990.

    CAS  Google Scholar 

  • Eshghi, H., Bakavoli, M., & Moradi, H. (2009a). Ferric hydrogensulfate catalyzed aerobic oxidative coupling of 2-naphthols in water or under solvent free conditions. Chinese Chemical Letters, 20, 663–667. DOI: 10.1016/j.cclet.2008.12. 045.

    Article  CAS  Google Scholar 

  • Eshghi, H., Bakavoli, M., & Moradi, H. (2008a). Fe(HSO4)3: An efficient, heterogeneous and reusable catalyst for the synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthenes. Chinese Chemical Letters, 19, 1423–1426. DOI: 10.1016/j.cclet.2008. 09.048.

    Article  CAS  Google Scholar 

  • Eshghi, H., Bakavoli, M., Moradi, H., & Davoodnia, A. (2009b). Fe(HSO4)3 and Fe(HSO4)3/DMSO as efficient, heterogeneous, and reusable catalyst systems for the oxidative coupling of thiols. Phosphorus, Sulfur and Silicon and the Related Elements, 184, 3110–3118. DOI: 10.1080/10426500802704654.

    Article  CAS  Google Scholar 

  • Eshghi, H., Mirzaie, N., & Asoodeh, A. (2011). Synthesis of fluorescein aromatic esters in the presence of P2O5/SiO2 as catalyst and their hydrolysis studies in the presence of lipase. Dyes and Pigments, 89, 120–126. DOI: 10.1016/j.dyepig.2010. 09.013.

    Article  CAS  Google Scholar 

  • Eshghi, H., Rahimizadeh, M., & Saberi, S. (2008b). Fe(HSO4)3 as an inexpensive, eco-friendly, heterogeneous and reusable catalyst for acetal/ketal formation and their facile regeneration. Catalysis Communications, 9, 2460–2466. DOI: 10.1016/j.catcom.2008.06.015.

    Article  CAS  Google Scholar 

  • Fatima, K., Nosheen, S., Azhar, H., & Azhar, M. (2009). Synthesis and application of eosin. Pakistan Journal of Agricultural Sciences, 46, 1–7.

    Google Scholar 

  • Gronowska, J., & Dabkowska-Naskret, H. (1981). Fluoran derivatives. Part IX. Synthesis of halofluorans. Polish Journal of Chemistry, 55, 2151–2163.

    CAS  Google Scholar 

  • Heller, E., Klöckner, J., Lautenschläger, W., & Holzgrabe, U. (2010). Online monitoring of microwave-enhanced reactions by UV/Vis spectroscopy. European Journal of Organic Chemistry, 2010, 3569–3573. DOI: 10.1002/ejoc.201000441.

    Article  Google Scholar 

  • Hilderbrand, S. A., & Weissleder, R. (2007). One-pot synthesis of new symmetric and asymmetric xanthene dyes. Tetrahedron Letters, 48, 4383–4385. DOI: 10.1016/j.tetlet.2007.04. 088.

    Article  CAS  Google Scholar 

  • Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., & Nagano, T. (1998). Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Analytical Chemistry, 70, 244–2453. DOI: 10.1021/ac9801723.

    Article  Google Scholar 

  • Miura, T., Urano, Y., Tanaka, K., Nagano, T., Ohkubo, K., & Fukuzumi, S. (2003). Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer. Journal of the American Chemical Society, 125, 8666–8671. DOI: 10.1021/ja035282s.

    Article  CAS  Google Scholar 

  • Mizukami, S., Kikuchi, K., Higuchi, T., Urano, Y., Mashima, T., Tsuruo, T., & Nagano, T. (1999). Imaging of caspase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe. FEBS Letters, 453, 356–360. DOI: 10.1016/S0014-5793(99)00755-3.

    Article  CAS  Google Scholar 

  • Mugherli, L., Burchak, O. N., Chatelain, F., & Balakirev, M. Y. (2006). Fluorogenic ester substrates to assess proteolytic activity. Bioorganic & Medicinal Chemistry Letters, 16, 4488–4491. DOI: 10.1016/j.bmcl.2006.06.037.

    Article  CAS  Google Scholar 

  • Peng, T., & Yang, D. (2010). HKGreen-3: A rhodol-based fluorescent probe for peroxynitrite. Organic Letters, 12, 4932–4935. DOI: 10.1021/ol102182j.

    Article  CAS  Google Scholar 

  • Rahimizadeh, M., Eshghi, H., Bakhtiarpoor, Z., & Pordel, M. (2009). Ferric hydrogensulfate as a recyclable catalyst for the synthesis of some new bis(indolyl)methane derivatives. Journal of Chemical Research, 2009, 269–270. DOI: 10.3184/030823409X430194.

    Article  Google Scholar 

  • Sun, W.-C., Gee, K. R., Klaubert, D. H., & Haugland, R. P. (1997). Synthesis of fluorinated fluoresceins. The Journal of Organic Chemistry, 62, 6469–6475. DOI: 10.1021/jo9706178.

    Article  CAS  Google Scholar 

  • Tanaka, K., Miura, T., Umezawa, N., Urano, Y., Kikuchi, K., Higuchi, T., & Nagano, T. (2001). Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. Journal of the American Chemical Society, 123, 2530–2536. DOI: 10.1021/ja0035708.

    Article  CAS  Google Scholar 

  • Tsien, R. Y., & Waggoner, A. (1995). Fluorophores for confocal microscopy. In J. B. Pawley (Ed.), Handbook of biological confocal microscopy (2nd ed., pp. 267–279). New York, NY, USA: Plenum Press.

    Google Scholar 

  • Weissleder, R., & Ntziachristos, V. (2003). Shedding light onto live molecular targets. Nature Medicine, 9, 123–128. DOI: 10.1038/nm0103-123.

    Article  CAS  Google Scholar 

  • Windholz, M. (1976). The Merck index (9th ed.). Rahway, NJ, USA: Merck.

    Google Scholar 

  • Woodroofe, C. C., Lim, M. H., Bu. W., & Lippard, S. J. (2005). Synthesis of isomerically pure carboxylate- and sulfonatesubstituted xanthene fluorophores. Tetrahedron Letters, 61, 3097–3105. DOI: 10.1016/j.tet.2005.01.024.

    CAS  Google Scholar 

  • Zaikova, T. O., Rukavishnikov, A. V., Birrell, G. B., Griffith, O. H., & Keana, J. F. W. (2001). Synthesis of fluorogenic substrates for continuous assay of phosphatidylinositol-specific phospholipase C. Bioconjugate Chemistry, 12, 307–313. DOI: 10.1021/bc0001138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Eshghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshghi, H., Mirzaie, N. Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives. Chem. Pap. 65, 504–509 (2011). https://doi.org/10.2478/s11696-011-0024-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0024-3

Keywords

Navigation