Skip to main content
Log in

Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) (PEG-b-PBLG-g-PEG) copolymer was synthesised by the ester exchange reaction of PEG-block-PBLG copolymer with mPEG. The self-association behaviour of PEG-b-PBLG-g-PEG in mixtures of ethanol, chloroform, and trifluoroacetic acid as denaturing acid was investigated by transmission electron microscopy, nuclear magnetic resonance spectroscopy, FT-IR spectroscopy, dynamic light scattering, and viscometry. It was revealed that the increase in denaturing acid content in the mixed system not only promoted the critical micelle concentration but also changed the morphology of the polymeric micelles from elliptical to spherical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, A., & Yamazaki, T. (1989). Deuterium NMR analysis of poly(γ-benzyl l-glutamate) in the lyotropic liquid-crystalline state: orientational order of the α-helical backbone and conformation of the pendant side chain. Macromolecules, 22, 2138–2145. DOI: 10.1021/ma00195a023.

    Article  CAS  Google Scholar 

  • Cheon, J.-B., Jeong, Y.-I., & Cho, C.-S. (1999). Effects of temperature on diblock copolymer micelle composed of poly(γ-benzyl l-glutamate) and poly(N-isopropylacrylamide). Polymer, 40, 2041–2050. DOI: 10.1016/S0032-3861(98)00432-7.

    Article  CAS  Google Scholar 

  • Cho, C.-S., Cheon, J.-B., Jeong, Y.-I., Kim, I.-S., Kim, S.-H., & Akaike, T. (1997). Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(N-isopropylacrylamide) as the shell. Macromolecular Rapid Communications, 18, 361–369. DOI: 10.1002/marc.1997.030180502.

    Article  CAS  Google Scholar 

  • Cho, C.-S., Jeong, Y.-I., Kim, S.-H., Nah, J.-W., Kubota, M., & Komoto, T. (2000). Thermoplastic hydrogel based on hexablock copolymer composed of poly(γ-benzyl l-glutamate) and poly(ethylene oxide). Polymer, 41, 5185–5193. DOI: 10.1016/S0032-3861(99)00746-6.

    Article  CAS  Google Scholar 

  • Cho, C.-S., Nah, J.-W., Jeong, Y.-I., Cheon, J.-B., Asayama, S., Ise, H., & Akaike, T. (1999). Conformational transition of nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(ethylene oxide) as the shell. Polymer, 40, 6769–6775. DOI: 10.1016/S0032-3861(99)00007-5.

    Article  CAS  Google Scholar 

  • Ferretti, J. A., & Ninham, B. W. (1970). Nuclear magnetic resonance investigation of the helix to random coil transformation in poly(α-amino acids). II. Poly(γ-benzyl l-glutamate). Macromolecules, 3, 30–33. DOI: 10.1021/ma60013a008.

    Article  CAS  Google Scholar 

  • Gao, Z., Desjardins, A., & Eisenberg, A. (1992). Solubilization equilibria of water in nonaqueous solutions of block ionomer reverse micelles: an NMR study. Macromolecules, 25, 1300–1303. DOI: 10.1021/ma00030a015.

    Article  CAS  Google Scholar 

  • Harada, A., Cammas, S., & Kataoka, K. (1996). Stabilized α-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 29, 6183–6188. DOI: 10.1021/ma960487p.

    Article  CAS  Google Scholar 

  • Harada, A., & Kataoka, K. (1995). Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules, 28, 5294–5299. DOI: 10.1021/ma00119a019.

    Article  CAS  Google Scholar 

  • Higashi, N., Kawahara, J., & Niwa, M. (2005). Preparation of helical peptide monolayer-coated gold nanoparticles. Journal of Colloid and Interface Science, 288, 83–87. DOI: 10.1016/j.jcis.2005.02.086.

    Article  CAS  Google Scholar 

  • Inomata, K., Ohara, N., Shimizu, H., & Nose, T. (1998). Phase behaviour of rod with flexible side chains/coil/solvent systems: poly(α-l-glutamate) with tri(ethylene glycol) side chains, poly(ethylene glycol), and dimethylformamide. Polymer, 39, 3379–3386. DOI: 10.1016/S0032-3861(97)10037-4.

    Article  CAS  Google Scholar 

  • Inomata, K., Shimizu, H., & Nose, T. (2000). Phase equilibrium studies on rod/solvent and rod/coil/solvent systems containing poly(α, l-glutamate) having oligo(ethylene glycol) side chains. Journal of Polymer Science Part B: Polymer Physics, 38, 1331–1340. DOI: 10.1002/(SICI)1099-0488(20000515)38:10<1331::AID-POLB90>3.0.CO;2-F.

    Article  CAS  Google Scholar 

  • Jeong, Y.-I., Nah, J.-W., Lee, H.-C., Kim, S.-H., & Cho, C.-S. (1999). Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. International Journal of Pharmaceutics, 188, 49–58. DOI: 10.1016/S0378-5173(99)00202-1.

    Article  CAS  Google Scholar 

  • Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. (1993). Micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyl l-aspartate). Langmuir, 9, 945–949. DOI: 10.1021/la00028a012.

    Article  CAS  Google Scholar 

  • Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011.

    Article  CAS  Google Scholar 

  • Lin, J., Abe, A., Furuya, H., & Okamoto, S. (1996). Liquid crystal formation coupled with the coil-helix transition in the ternary system poly(γ-benzyl l-glutamate)/dichloroacetic acid/dichloroethane. Macromolecules, 29, 2584–2589. DOI: 10.1021/ma951026r.

    Article  CAS  Google Scholar 

  • Lin, J., Liu, N., Chen, J., & Zhou, D. (2000). Conformational changes coupled with the isotropic-anisotropic transition Part 1. Experimental phenomena and theoretical con siderations. Polymer, 41, 6189–6194. DOI: 10.1016/S0032-3861(99)00848-4.

    Article  CAS  Google Scholar 

  • Lin, J., Zhang, S., Chen, T., Lin, S., & Jin, H. (2007). Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. International Journal of Pharmaceutics, 336, 49–57. DOI: 10.1016/j.ijpharm.2006.11.026.

    Article  CAS  Google Scholar 

  • Lin, J., Zhang, S., Chen, T., Liu, C., Lin, S., & Tian, X. (2006). Calcium phosphate cement reinforced by polypeptide copolymers. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 76B, 432–439. DOI: 10.1002/jbm.b.30392.

    Article  CAS  Google Scholar 

  • Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021.

    Article  CAS  Google Scholar 

  • Lin, J., Zhu, J., Chen, T., Lin, S., Cai, C., Zhang, L., Zhuang, Y., & Wang, X.-S. (2009). Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials, 30, 108–117. DOI: 10.1016/j.biomaterials.2008.09.010.

    Article  CAS  Google Scholar 

  • Liu, N., Lin, J., Chen, T., Chen, J., Zhou, D., & Li, L. (2001). Helix-coil conformation change accompanied by anisotropic-isotropic transition. Polymer Journal, 33, 898–901. DOI: 10.1295/polymj.33.898.

    Article  CAS  Google Scholar 

  • Markland, P., Amidon, G. L., & Yang, V. C. (1999). Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. International Journal of Pharmaceutics, 178, 183–192. DOI: 10.1016/S0378-5173(98)00373-1.

    Article  CAS  Google Scholar 

  • Nah, J.-W., Jeong, Y.-I., & Cho, C.-S. (1998). Clonazepam release from core-shell type nanoparticles composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Journal of Polymer Science Part B: Polymer Physics, 36, 415–423. DOI: 10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3> 3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  • Oh, I., Lee, K., Kwon, H.-Y., Lee, Y.-B., Shin, S.-C., Cho, C.-S., & Kim, C.-K. (1999). Release of adriamycin from poly(γ-benzyl-l-glutamate)/poly(ethylene oxide) nanoparticles. International Journal of Pharmaceutics, 181, 107–115. DOI: 10.1016/S0378-5173(99)00012-5.

    Article  CAS  Google Scholar 

  • Tang, D., Lin, J., Lin, S., Zhang, S., Chen, T., & Tian, X. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly( ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.200400100.

    Article  CAS  Google Scholar 

  • Xu, Z., Feng, L., Ji, J., Cheng, S., Chen, Y., & Yi, C. (1998). The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene. European Polymer Journal, 34, 1499–1504. DOI: 10.1016/S0014-3057(97)00279-6.

    Article  CAS  Google Scholar 

  • Zhang, W., Shi, L., An, Y., Wu, K., Gao, L. Liu, Z., Ma, R., Meng, Q., Zhao, C., & He, B. (2004). Adsorption of poly(4-vinyl pyridine) unimers into polystyrene-block-poly(acrylic acid) micelles in ethanol due to hydrogen bonding. Macromolecules, 37, 2924–2929. DOI: 10.1021/ma0499775.

    Article  CAS  Google Scholar 

  • Zhong, X. F., Varshney, S. K., & Eisenberg, A. (1992). Critical micelle lengths for ionic blocks in solutions of polystyrene-b-poly( sodium acrylate) ionomers. Macromolecules, 25, 7160–7167. DOI: 10.1021/ma00052a014.

    Article  CAS  Google Scholar 

  • Zhu, G.-Q. (2010). Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Chemical Papers, 64, 34–39. DOI: 10.2478/s11696-009-0090-y.

    Article  CAS  Google Scholar 

  • Zhu, G.-Q. (2009a). Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol. Chemical Papers, 63, 683–688. DOI: 10.2478/s11696-009-0074-y.

    Article  CAS  Google Scholar 

  • Zhu, G.-Q. (2009b). Study on self-assembly of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and poly(γ-benzyl l-glutamate)-block-poly( ethylene glycol) copolymer in ethanol. Journal of Macromolecular Science Part A, 46, 892–898. DOI: 10.1080/10601320903078313.

    Article  CAS  Google Scholar 

  • Zhu, G.-Q. (2009c). Structure and performance of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Fibers and Polymers, 10, 425–429. DOI: 10.1007/s12221-009-0425-x.

    Article  CAS  Google Scholar 

  • Zhu, G.-Q., Gao, Q.-C., Li, Z.-H., Wang, F.-G., & Zhang, H. (2010a). Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer. Chemical Papers, 64, 776–782. DOI: 10.2478/s11696-010-0069-8.

    Article  CAS  Google Scholar 

  • Zhu, G.-Q., Wang, F.-G., Liu, Y.-Y., & Gao, Q.-C. (2010b). Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents. Chemical Papers, 64, 657–662. DOI: 10.2478/s11 696-010-0046-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Quan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, GQ., Gao, QC., Wang, FG. et al. Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol. Chem. Pap. 65, 477–482 (2011). https://doi.org/10.2478/s11696-011-0021-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0021-6

Keywords

Navigation