Chemical Papers

, Volume 65, Issue 3, pp 308–314 | Cite as

Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours

  • Iwona ŁakomskaEmail author
  • Anna Kaźnica
  • Romana Joachimiak
  • Andrzej Marszałek
  • Jerzy Sitkowski
  • Lech Kozerski
  • Tomasz Drewa
Original Paper


A novel platinum(IV) coordination compound with 6-mercaptopurine (6-Hmp) has been synthesised and characterised by IR and NMR spectroscopy. Spectroscopic parameters indicate the presence of two chelate (S-6, N-7) monodeprotonated ligands and two chloride ions in the coordination sphere of [PtCl2(6-mp)2] · H2O (I). Two Pt(IV) coordination compounds, [PtCl2(6-mp)2] · H2O (I) and [PtCl4(dbtp)2] (II), were used in the in vivo test against B16 mouse melanoma tumours. Cytotoxic activity of compound II against the tumour cells was found to be high (LC10 = 2.6 μM, LC50 = 17.0 μM, LC90 = 58.0 μM) compared to that of cisplatin.


platinum(IV) complexes purine analogues NMR cytotoxicity in vivo melanoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlin, G. B., & Fenn, M. D. (1986). A carbon-13 and proton nuclear magnetic resonance study of hydroxy- and mercaptonitropyridines and their N-, O-, and S-methyl derivatives and analogous compounds in dimethyl sulfoxide. Heterocycles, 24, 1301–1309.DOI:10.3987/R-1986-05-1301.CrossRefGoogle Scholar
  2. Bülow, C., & Haas, K. (1909). Synthetische Versuche zur Darstellung von Derivaten des heterokondensierten, heterocyclischen 1.3-Triazo-7.0′-pyrimidins. Berichte der Deutschen Chemischen Gesellschaft, 42, 4638–4644.DOI:10.1002/cber.19090420468.CrossRefGoogle Scholar
  3. Burstyn, J. N., Heiger-Bernays, W. J., Cohen, S. M., & Lippard, S. J. (2000). Formation of cis-diamminedichloroplatinum(II) 1,2-intrastrand cross-links on DNA is flanking-sequence independent. Nucleic Acids Research, 28, 4237–4243.DOI:10.1093/nar/28.21.4237.CrossRefGoogle Scholar
  4. Chaney, S. G., Gibbons, G. R., Wyrick, S. D., & Podhasky, P. (1991). An unexpected biotransformation pathway for tetrachloro-(d,l-trans)-1,2-diaminocyclohexaneplatinum(IV) (tetraplatin) in the L1210 cell line. Cancer Research, 51, 969–973.Google Scholar
  5. Dempke, W., Voigt, W., Grothey, A., Hill, B. T., & Schmoll, H.-J. (2000). Cisplatin resistance and oncogenes — a review. Anti-Cancer Drugs, 11, 225–236.CrossRefGoogle Scholar
  6. Dolman, R. C., Deacon, G. B., & Hambley, T. W. (2002). Studies of the binding of a series of platinum(IV) complexes to plasma proteins. Journal of Inorganic Biochemistry, 88, 260–267.DOI:10.1016/S0162-0134(01)00360-9.CrossRefGoogle Scholar
  7. Drewa, T., Olszewska-Słonina, D., Woźniak, A., Styczyński, J., Drewa, G., Szłyk, E., Łakomska, I., Kobe, J., & Czajkowski, R. (2004). Influence of a novel platinum compound — cisdichloro(dimethylsulphoxide)(1-β-D-ribofuranosyl-1,2,4-triazolo-3-carboxyamide) platinum(II) — “Pt-rib-1” — on cell cycle and apoptosis in CLS91 and B16 mouse melanoma in vitro. Acta Poloniae Pharmaceutica — Drug Research, 61, 39–44Google Scholar
  8. Drewa, T., Woźniak, A., Drewa, G., Olszewska, D., Woźniak, B., Wysocki, M., Szłyk, E., & Łakomska, A. (2001). Effect of novel platinum complexes on survival rate of B16 and Cl S91 melanoma cells and oxidation stress in vitro. Medical Science Monitor, 7, 680–686.Google Scholar
  9. Drewa, T., Woźniak, A., Olszewska, D., Szłyk, E., Łakomska, I., Mila-Kierzenkowska, C., & Czajkowski, R. (2001). The in vitro study of influence of four novel platinum compounds on rodent melanoma cells. Acta Poloniae Pharmaceutica — Drug Research, 58, 169–174.Google Scholar
  10. Griffith, E. A. H., & Amma, E. L. (1979). Crystal structure and 48113 Cd n.m.r. spectrum of di-μ-chloro-dichlorobis-(6-mercaptopurine)diaquodicadmium (II). Journal of the Chemical Society, Chemical Communications, 1979, 1013–1014. DOI:10.1039/C39790001013.Google Scholar
  11. Grodzicki, A., Szłyk, E., Pazderski, L. Goliński, A., & Haasnoot, J. G. (1996). NMR properties of 5,7-disubstituted derivatives of 1,2,4-triazolo[1,5a]pyrimidines. Magnetic Resonance in Chemistry, 34, 725–727. DOI:10.1002/(SICI)1097-458X(199609)34:9〈725::AID-OMR939〉3.0.CO;2-Z.CrossRefGoogle Scholar
  12. Gruber, B. M., Anuszewska, E. L., & Priebe, W. (2004). The effect of new anthracycline derivatives on the induction of apoptotic processes in human neoplastic cells. Folia Histochemica et Cytobiologica, 42, 127–130.Google Scholar
  13. Hall, M. D., & Hambley, T. W. (2002). Platinum(IV) antitumor compounds: their bioinorganic chemistry. Coordination Chemistry Reviews, 232, 49–67.DOI:10.1016/S0010-8545(02)00026-7.CrossRefGoogle Scholar
  14. Hartwig, J. F., & Lippard, S. J. (1992). DNA binding properties of [Pt(NH3)(C6H11NH2)Cl2], a metabolite of an orally active platinum anticancer drug. Journal of the American Chemical Society, 114, 5646–5654.DOI:10.1021/ja00040a026.CrossRefGoogle Scholar
  15. Kasparkova, J., Fojta, M., Farrell, N., & Brabec, V. (2004). Differential recognition by the tumor suppressor protein p53 of DNA modified by the novel antitumor trinuclear platinum drug BBR3464 and cisplatin. Nucleic Acids Research, 32, 5546–5552.DOI:10.1093/nar/gkh896.CrossRefGoogle Scholar
  16. Katsaros, N., & Grigoratou, A. (1985). Platinum group metal complexes with 6-mercaptopurine and its riboside. Journal of Inorganic Biochemistry, 25, 131–140. DOI:10.1016/0162-0134(85)80021-0.CrossRefGoogle Scholar
  17. Kaznica, A., Drewa, T., Lakomska, I., Ryta-Stamirowska, P., Debski, R., Styczynski, J., Drewa, G., & Szłyk, E. (2009). Influence of two Pt(IV) complexes on viability, apoptosis and cell cycle of B16 mouse melanoma tumors. Experimental Oncology, 31, 33–36.Google Scholar
  18. Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7, 573–584. DOI:10.1038/nrc2167.CrossRefGoogle Scholar
  19. Kelland, L. R. (2000). Preclinical perspectives on platinum resistance. Drugs, 59, 1–8.CrossRefGoogle Scholar
  20. Khan, S. R. A., Huang, S., Shamsuddin, S., Inutsuka, S., Whitmire, K. H., Siddik, Z. H., & Khokhar, A. R. (2000). Synthesis, characterization and cytotoxicity of new platinum(IV) axial carboxylate complexes: crystal structure of potential antitumor agent [PtIV(trans-1R,2R-diaminocyclohexane) trans(acetate)2Cl2]. Bioorganic & Medicinal Chemistry, 8, 515–521. DOI:10.1016/S0968-0896(99)00313-2.CrossRefGoogle Scholar
  21. Kim, K. M., Lee, Y.-A., Lee, S. S., & Sohn, Y. S. (1999). Facile synthesis and structural properties of (diamine)tetracarboxylatoplatinum(IV) complexes. Inorganica Chimica Acta, 292, 52–56. DOI:10.1016/S0020-1693(99)00169-3.CrossRefGoogle Scholar
  22. Kurata, T., Tamura, T., Sasaki, Y., Fujii, H., Negoro, S., Fukuoka, M., & Saijo, N. (2000). Pharmacokinetic and pharmacodynamic analysis of bis-acetato-ammine-dichlorocyclohexylamine-platinum(IV) (JM216) administered once a day for five consecutive days: a phase I study. Japanese Journal of Clinical Oncology, 30, 377–384. DOI:10.1093/jjco/hyd102.CrossRefGoogle Scholar
  23. Łakomska, I. (2009). Molecular structure and antitumor activity of platinum(II) complexes containing purine analogs. Inorganica Chimica Acta, 362, 669–681. DOI:10.1016/j.ica.2008.02.030.CrossRefGoogle Scholar
  24. Łakomska, I., Pazderski, L., Sitkowski, J., Kozerski, L., Pełczyńska, M., Nasulewicz, A., Opolski, A., & Szłyk, E. (2004). Multinuclear NMR spectroscopy and antiproliferative activity in vitro of platinum(II) and palladium(II) complexes with 6-mercaptopurine. Journal of Molecular Structure, 707, 241–247. DOI:10.1016/j.molstruc.2004.07.027.CrossRefGoogle Scholar
  25. Łakomska, I., Wojtczak, A., Sitkowski, J., Kozerski, L., & Szłyk, E. (2008). Platinum(IV) complexes with purine analogs. Studies of molecular structure and antiproliferative activity in vitro. Polyhedron, 27, 2765–2770. DOI:10.1016/j.poly.2008.05.032.Google Scholar
  26. Liedert, B., Materna, V., Schadendorf, D., Thomale, J., & Lage, H. (2003). Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. Journal of Investigative Dermatology, 121, 172–176. DOI:10.1046/j.1523-1747.2003.12313.x.CrossRefGoogle Scholar
  27. Nakamoto, K. (1978). Infrared and Raman spectra of inorganic and coordination compounds. New York, NY, USA: Wiley.Google Scholar
  28. Natile, G., & Coluccia, M. (2001). Current status of transplatinum compounds in cancer therapy. Coordination Chemistry Reviews, 216–217, 383–410. DOI:10.1016/S0010-8545(01)00315-0.CrossRefGoogle Scholar
  29. Nitiss, J. L. (2002). A copper connection to the uptake of platinum anticancer drugs. Proceedings of the National Academy of Sciences of the United States of America, 99, 13963–13965. DOI:10.1073/pnas.232574299.CrossRefGoogle Scholar
  30. O’Dweyer, P. J., Stevenson, J. P., & Johnson, S. W. (1999). Clinical status of cisplatin, carboplatin, and other platinumbased antitumor drugs. In B. Lippert (Ed.), Cisplatin: chemistry and biochemistry of a leading anticancer drug (pp. 31–72). Weinheim, Germany: Wiley-VCH.Google Scholar
  31. Presant, C. A., & Bartolucci, A. A. (1982). Prognostic factors in metastatic malignant melanoma. The southeastern cancer study group experience. Cancer, 49, 2192–2196. DOI:10.1002/1097-0142(19820515)49:10〈2192::AIDCNCR2820491035〉3.0.CO;2-R.CrossRefGoogle Scholar
  32. Reedijk, J. (2009). Platinum anticancer coordination compounds: Study of DNA binding inspires new drug design. European Journal of Inorganic Chemistry, 2009, 1303–1312. DOI:10.1002/ejic.200900054.CrossRefGoogle Scholar
  33. Reedijk, J. (2008). Metal-ligand exchange kinetics in platinum and ruthenium complexes. Platinum Metals Review, 52, 2–11. DOI:10.1595/147106708X255987.CrossRefGoogle Scholar
  34. Sabo, T. J., Đinović, V. M., Kaluđerović, G. N., Stanojković, T. P., Bogdanović, G. A., & Juranić Z. D. (2005). Syntheses and activity of some platinum(IV) complexes with N-methyl derivate of glycine and halogeno ligands against HeLa, K562 cell lines and human PBMC. Inorganica Chimica Acta, 358, 2239–2245. DOI:10.1016/j.ica.2005.01.007.CrossRefGoogle Scholar
  35. Shamsuddin, S., Santillan, C. C., Stark, J. L., Whitmire, K. H., Siddik, Z. H., & Khokhar, A. R. (1998). Synthesis, characterization, and antitumor activity of new platinum(IV) trans-carboxylate complexes: Crystal structure of [Pt(cis-1,4-DACH)trans-(acetate)2Cl2]. Journal of Inorganic Biochemistry, 71, 29–35. DOI:10.1016/S0162-0134(98)10029-6.CrossRefGoogle Scholar
  36. Shamsuddin, S., Takahashi, I., Siddik, Z. H., & Khokhar, A. R. (1996). Synthesis, characterization, and antitumor activity of a series of novel cisplatin analogs with cis-1,4-diaminocyclohexane as nonleaving amine group. Journal of Inorganic Biochemistry, 61, 291–301. DOI:10.1016/0162-0134(95)00084-4.CrossRefGoogle Scholar
  37. Silverstein, R. M., & Webster, F. X. (1998). Spectrometric identification of organic compounds (6th ed.). New York, NY, USA: Wiley.Google Scholar
  38. Smith, J. A., Ngo, H., Martin, M. C., & Wolf, J. K. (2005). An evaluation of cytotoxicity of the taxane and platinum agents combination treatment in a panel of human ovarian carcinoma cell lines. Gynecologic Ongology, 98, 141–145. DOI:10.1016/j.ygyno.2005.02.006.CrossRefGoogle Scholar
  39. Song, R., Park, S. Y., Kim, Y.-S., Kim, Y., Kim, S.-J, Ahn, B. T., & Sohn, Y. S. (2003). Synthesis and cytotoxicity of new platinum(IV) complexes of mixed carboxylates. Journal of Inorganic Biochemistry, 96, 339–345. DOI:10.1016/S0162-0134(03)00149-1.CrossRefGoogle Scholar
  40. Woźniak, K., & Błasiak, J. (2002). Recognition and repair of DNA-cisplatin adducts. Acta Biochimica Polonica, 49, 583–596.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Iwona Łakomska
    • 1
    Email author
  • Anna Kaźnica
    • 2
  • Romana Joachimiak
    • 2
  • Andrzej Marszałek
    • 3
  • Jerzy Sitkowski
    • 4
  • Lech Kozerski
    • 4
  • Tomasz Drewa
    • 2
  1. 1.Faculty of ChemistryNicolaus Copernicus UniversityToruńPoland
  2. 2.Chair of Medical BiologyNicolaus Copernicus UniversityBydgoszczPoland
  3. 3.Department of Clinical PathomorphologyNicolaus Copernicus UniversityBydgoszczPoland
  4. 4.National Institute of Public HealthWarsawPoland

Personalised recommendations