Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 345–351 | Cite as

Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent

  • Selvaraj Mohana Roopan
  • Fazlur-Rahman Nawaz KhanEmail author
  • Jong Sung JinEmail author
Original Paper

Abstract

The Mitsunobu reaction is a well-established fundamental reaction and has been widely applied in organic synthesis. In this paper, under Mitsunobu conditions dehydration proceeds between (2-chloroquinolin-3-yl)methanol and nitrogen heterocyclic compounds such as quinazolinone, pyrimidone, 2-oxoquinoline in dry THF in the presence of triethylamine, triphenylphosphane and diethyl azodicarboxylate to give the corresponding products. As part of our recent research, we attempted to couple two N-heterocyclic compounds under Mitsunobu reaction conditions to provide efficient building blocks for natural product synthesis.

Keywords

Mitsunobu reaction N-heterocyclic compounds (2-chloroquinolin-3-yl)methanol DEAD P(Ph)3 THF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre, F. R., Berecibar, A., Wrigglesworth, R., & Besson, T. (2003). Novel series of 8H-quinazolino[4,3-b]quinazolin-8-ones via two Niementowski condensations. Tetrahedron, 59, 1413–1419. DOI: 10.1016/S0040-4020(03)00053-X.CrossRefGoogle Scholar
  2. Chavan, S. P., & Sivappa, R. (2004a). A short and efficient general synthesis of luotonin A, B and E. Tetrahedron, 60, 9931–9935. DOI: 10.1016/j.tet.2004.08.025.CrossRefGoogle Scholar
  3. Chavan, S. P., & Sivappa, R. (2004b). A synthesis of camptothecin. Tetrahedron Letters, 45, 3113–3115. DOI: 10.1016/j.tetlet.2004.02.091.CrossRefGoogle Scholar
  4. Cravotto, G., Nano, G. M., Palmisano, G., & Tagliapietra, S. (2001). An asymmetric approach to coumarin anticoagulants via hetero-Diels-Alder cycloaddition. Tetrahedron: Asymmetry, 12, 707–709. DOI: 10.1016/S0957-4166(01)00124-0.CrossRefGoogle Scholar
  5. Das, B., Madhusudhan, P., & Kashinatham, A. (1998). Two efficient methods for the conversion of camptothecin to mappicine ketone, an antiviral lead compound. Tetrahedron Letters, 39, 431–432. DOI: 10.1016/S0040-4039(97)10539-1.CrossRefGoogle Scholar
  6. Dömling, A. (2006). Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 106, 17–89. DOI: 10.1021/cr0505728.CrossRefGoogle Scholar
  7. Dömling, A., & Ugi, I. (2000). Multicomponent reactions with isocyanides. Angewandte Chemie International Edition, 39, 3168–3210. DOI: 10.1002/1521-3773(20000915)39:18〈3168::AID-ANIE3168〉3.0.CO;2-U.Google Scholar
  8. Guan, L.-P., Jin, Q.-H., Tian, G.-R., Chai, K.-Y., & Quan, Z.-S. (2007). Synthesis of some quinoline-2(1H)-one and 1,2,4-triazolo [4,3-a] quinoline derivatives as potent anticonvulsants. Journal of Pharmacy & Pharmaceutical Sciences, 10, 254–262.Google Scholar
  9. Kayser, O., & Kolodziej, H. (1997). Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Medica, 63, 508–510. DOI: 10.1055/s-2006-957752.CrossRefGoogle Scholar
  10. Khan, F. N., Mittal, S., Anjum, S., Hathwar, V. R., & Ng, S. W. (2009a). Ethyl 6-chloro-2-oxo-4-phenyl-1,2-dihydroquinoline-3-carboxylate. Acta Crystallographica Section E, E65, o2987. DOI: 10.1107/S1600536809045425.CrossRefGoogle Scholar
  11. Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010a). 2-Chloro-3-hydroxymethyl-7,8-dimethylquinoline. Acta Crystallographica Section E, E66, o200. DOI: 10.1107/S160053680905404X.CrossRefGoogle Scholar
  12. Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010b). 2-Chloro-3-hydroxymethyl-6-methoxyquinoline. Acta Crystallographica Section E, E66, o201. DOI: 10.1107/S1600536809054051.CrossRefGoogle Scholar
  13. Khan, F. N., Subashini, R., Kumar, R., Hathwar, V. R., & Ng, S. W. (2009b). 2-Chloroquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2710. DOI: 10.1107/S1600536809040665.CrossRefGoogle Scholar
  14. Khan, F. N., Subashini, R., Kushwaha, A. K., Hathwar, V. R., & Ng, S. W. (2009c). 2-Chloro-8-methylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2722. DOI: 10.1107/S1600536809040859.CrossRefGoogle Scholar
  15. Khan, F. N., Subashini, R., Kushwaha, A. K., Hathwar, V. R., & Ng, S. W. (2009d). 2-Chloro-7,8-dimethylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2709. DOI: 10.1107/S1600536809040860.CrossRefGoogle Scholar
  16. Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2009e). 2-Chloro-6-methylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2686. DOI: 10.1107/S1600536809040653.CrossRefGoogle Scholar
  17. Kidwai, M., & Negi, N. (1997). Synthesis of some novel substituted quinolines as potent analgesic agents. Monatshefte für Chemie, 128, 85–89. DOI: 10.1007/BF00807642.CrossRefGoogle Scholar
  18. Kirkiacharian, S., Thuy, D. T., Sicsic, S., Bakhchinian, R., Kurkjian, R., & Tonnaire, T. (2002). Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Il Farmaco, 57, 703–708. DOI: 10.1016/S0014-827X(02)01264-8.CrossRefGoogle Scholar
  19. Leonard, N. J., & Curtin, D. Y. (1946). Preparation of 4-mercapto and 4-amino quinazolines. The Journal of Organic Chemistry, 11, 349–352. DOI: 10.1021/jo01174a007.CrossRefGoogle Scholar
  20. Manivel, P., Roopan, S. M., & Khan, F. N. (2008). Synthesis of O-substituted benzophenones by Grignard reaction of 3-substituted isocoumarins. Journal of the Chilean Chemical Society, 53, 1609–1610. DOI: 10.4067/S0717-97072008000300012.CrossRefGoogle Scholar
  21. Patil, N. T., Khan, F. N., & Yamamoto, Y. (2004). Microwave-enhanced Pd(0)/acetic acid catalyzed allylation reactions of C, N, and O-pronucleophiles with alkynes. Tetrahedron Letters, 45, 8497–8499. DOI: 10.1016/j.tetlet.2004.09.099.CrossRefGoogle Scholar
  22. Roopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N., & Khan, F. N. (2009a). N-phenylnictoninamide. Acta Crystallographica Section E, E65, o571. DOI: 10.1107/S1600536809004863.CrossRefGoogle Scholar
  23. Roopan, S. M., & Khan, F. R. N. (2010). ZnO nanoparticles in the synthesis of some AB ring core of camptothecin. Chemical Papers, 64, 812–817. DOI: 10.2478/s11696-010-0058-y.CrossRefGoogle Scholar
  24. Roopan, S. M., & Khan, F. R. N. (2009). Synthesis, antioxidant, hemolytic and cytotoxicity activity of AB ring cores of mappicine. ARKIVOC, xiii, 161–169.Google Scholar
  25. Roopan, S. M., & Khan, F. N. (2008). Free radical scavenging activity of nitrogen heterocyclics-quinazolinones & tetrahydrocarbazolones. Indian Journal of Heterocyclic Chemistry, 18, 183–184.Google Scholar
  26. Roopan, S. M., Khan, F. R. N., & Mandal, B. K. (2010). Fe nanoparticles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)-ones. Tetrahedron Letters, 51, 2309–2311. DOI: 10.1016/j.tetlet.2010.02.128.CrossRefGoogle Scholar
  27. Roopan, S. M., Maiyalagan, T., & Khan, F. N. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/V08-149.CrossRefGoogle Scholar
  28. Roopan, S. M., Reddy, B. R., Kumar, A. S., & Khan, F. N. (2009b). Synthesis of 3-substituted isocoumarins using montmorillonite K-10. Indian Journal of Heterocyclic Chemistry, 19, 81–82.Google Scholar
  29. Wang, C.-J., Hsieh, Y.-J., Chu, C.-Y., Lin, Y.-L., & Tseng, T.-H. (2002). Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Letters, 183, 163–168. DOI: 10.1016/S0304-3835(02)00031-9.CrossRefGoogle Scholar
  30. Wang, H., & Ganesan, A. (1998). Total synthesis of the cytotoxic alkaloid luotonin A Tetrahedron Letters, 39, 9097–9098. DOI: 10.1016/S0040-4039(98)02004-8.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  1. 1.Organic & Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced SciencesVIT UniversityVellore, Tamil NaduIndia
  2. 2.Division of High Technology Materials Research, Busan CenterKorea Basic Science Institute (KBSI)BusanRepublic of Korea

Personalised recommendations