Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 324–331 | Cite as

Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs

  • Xinwei Huang
  • Zhengyuan Tu
  • Zipeng Ma
  • Shi WuEmail author
Original Paper
  • 48 Downloads

Abstract

The equilibrium geometries and electronic structures for a series of single-wall carbon nanotubes (SWCNTs) modified with phenylene were studied using the density functional theory (DFT) at the B3LYP/6-31G(d) level. Of the four configurations of the phenylene-modified SWCNTs, the v-configuration in which the bond is perpendicular to the main axis of the SWCNT is the most thermodynamically stable. The increase in radii of the modified SWCNTs generally leads to a decrease in the energy gaps. The first absorptions in the electronic spectra of the modified SWCNTs compared with those in the electronic spectra of pristine SWCNTs are basically red-shifted. The chemical shifts of bridged carbon atoms connected with phenylene in the v-configuration are shifted downfield relative to those of the pristine SWCNTs. The aromaticity of the rings in SWCNTs is improved owing to the addition of phenylene.

Keywords

modified SWCNTs energy gap red-shift chemical shift aromaticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agboola, B. O., & Ozoemena, K. I. (2010). Synergistic enhancement of supercapacitance upon integration of nickel(II) octa[(3,5-biscarboxylate)-phenoxy]phthalocyanine with SWCNT-phenylamine. Journal of Power Sources, 195, 3841–3848. DOI: 10.1016/j.jpowsour.2009.12.095.CrossRefGoogle Scholar
  2. Aihara, J. (2000). Correlation found between the HOMOLUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Physical Chemistry Chemical Physics, 2, 3121–3125. DOI: 10.1039/B002601H.CrossRefGoogle Scholar
  3. Aihara, J. (1999). Weighed HOMO-LUMO energy separation as an index of kinetic stability for fullerenes. Theoretical Chemistry Accounts, 102, 134–138. DOI: 10.1007/s002140050483.CrossRefGoogle Scholar
  4. Akdim, B., Kar, T., Duan, X., & Pachter, R. (2007). Density functional theory calculations of ozone adsorption on sidewall single-wall carbon nanotubes with Stone-Wales defects. Chemical Physics Letters, 445, 281–287. DOI: 10.1016/j.cplett.2007.08.001.CrossRefGoogle Scholar
  5. Alver, Ö, & Şenyel, M. (2010). Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine. Chemical Papers, 64, 504–514 DOI: 10.2478/s11696-010-0021-y.CrossRefGoogle Scholar
  6. An, W., & Turner, C. H. (2009). Transition-metal strings templated on boron-doped carbon nanotubes: a DFT investigation. Journal of Physical Chemistry C, 113, 15346–15354. DOI: 10.1021/jp9052715.CrossRefGoogle Scholar
  7. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  8. Burghard, M. (2005). Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Science Reports, 58, 1–109. DOI: 10.1016/j.surfrep.2005.07.001.Google Scholar
  9. Chen, Z., & King, R. B. (2005). Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chemical Reviews, 105, 3613–3642. DOI: 10.1021/cr0300892.CrossRefGoogle Scholar
  10. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R., & von Ragué Schleyer, P. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105, 3842–3888. DOI: 10.1021/cr030088+.CrossRefGoogle Scholar
  11. Chu, Y.-Y., & Su, M.-D. (2004). Theoretical study of addition reactions of carbene, silylene, and germylene to carbon nanotubes. Chemical Physics Letters, 394, 231–237. DOI: 10.1016/j.cplett.2004.07.009.CrossRefGoogle Scholar
  12. Cosnier, S., & Holzinger, M. (2008). Design of carbon nanotubepolymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochimica Acta, 53, 3948–3954. DOI: 10.1016/j.electacta.2007.10.027.CrossRefGoogle Scholar
  13. Ding, L., Ding, Y.-Q., Teng, Q.-W., & Wang, K. (2007). The effect of substituents on the fluorescent properties of para-phenylenevinylene. Journal of the Chinese Chemical Society, 54, 853–860.Google Scholar
  14. Ding, L., Ding, Y.-Q., Teng, Q.-W., & Wang, K. (2008). Electronic structures and spectroscopy of luminescent para-phenylenevinylene oligomers. Chinese Journal of Chemistry, 26, 97–100. DOI: 10.1002/cjoc.200890044.CrossRefGoogle Scholar
  15. Ding, Y., Gao, P., Qin, L., & Teng, Q. (2009). Investigation on stabilities and spectroscopy of C80O2 based on C80 (D 5d) using density function theory. International Journal of Quantum Chemistry, 109, 693–700. DOI: 10.1002/qua.21885.CrossRefGoogle Scholar
  16. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A, Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H. P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision B. 01. Pittsburgh, PA, USA: Gaussian, Inc.Google Scholar
  17. Gao, P., Yu, Y., Ni, Z., & Teng, Q. (2010). Theoretical studies on the electronic structures and spectra of single silicon-doped SWCNTs. Central European Journal of Chemistry, 8, 587–593. DOI: 10.2478/s11532-010-0018-y.CrossRefGoogle Scholar
  18. Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual density functional theory. Chemical Reviews, 103, 1793–1874. DOI: 10.1021/cr990029p.CrossRefGoogle Scholar
  19. Gill, P. M. W., Johnson, B. G., & Pople, J. A. (1993). A standard grid for density functional calculations. Chemical Physics Letters, 209, 506–512. DOI: 10.1016/0009-2614(93)80125-9.CrossRefGoogle Scholar
  20. Gołąbczak, J., Strąkowska, J., & Konstantynowicz, A. (2005). Dynamics of evening primrose protein hydrolysis. Chemical Papers, 59, 409–412.Google Scholar
  21. Gotovac, S., Yang, C.-M., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science, 314, 18–24. DOI: 10.1016/j.jcis.2007.04.080.CrossRefGoogle Scholar
  22. Gupta, V., & Miura, N. (2006). Influence of the microstructure on the supercapacitive behavior of polyaniline/singlewall carbon nanotube composites. Journal of Power Sources, 157, 616–620. DOI: 10.1016/j.jpowsour.2005.07.046.CrossRefGoogle Scholar
  23. Haddad, R., Holzinger, M., Maaref, A., & Cosnier, S. (2010). Pyrene functionalized single-walled carbon nanotubes as precursors for high performance biosensors. Electrochimica Acta, 55, 7800–7803. DOI: 10.1016/j.electacta.2010.03.021.CrossRefGoogle Scholar
  24. Janjić, G. V., Milčić, M. K., & Zarić, S. D. (2009). Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes. Chemical Papers, 63, 298–305. DOI: 10.2478/s11696-009-0020-z.CrossRefGoogle Scholar
  25. Kar, T., Akdim, B., Duan, X., & Pachter, R. (2006). Openended modified single-wall carbon nanotubes: A theoretical study of the effects of purification. Chemical Physics Letters, 423, 126–130. DOI: 10.1016/j.cplett.2006.02.089.CrossRefGoogle Scholar
  26. Koleva, B. B., Kolev, T. M., & Todorov, S. (2007). Structural and spectroscopic analysis of dipeptide L-methionyl-glycine and its hydrochloride. Chemical Papers, 61, 490–496. DOI: 10.2478/s11696-007-0067-7.CrossRefGoogle Scholar
  27. Kóňa, J., & Tvaroška, I. (2009). Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates. Chemical Papers, 63, 598–607. DOI: 10.2478/s11696-009-0060-4.CrossRefGoogle Scholar
  28. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.CrossRefGoogle Scholar
  29. Lin, Y., Cai, W., & Shao, X. (2006). Formation and stability of parallel carbon nanotube junctions. Journal of Molecular Structure: THEOCHEM, 767, 87–93. DOI: 10.1016/j.theochem.2006.05.003.CrossRefGoogle Scholar
  30. Lu, X., & Chen, Z. (2005). Curved π-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696. DOI: 10.1021/cr030093d.CrossRefGoogle Scholar
  31. Mugadza, T., & Nyokong, T. (2009). Synthesis and characterization of electrocatalytic conjugates of tetraamino cobalt (II) phthalocyanine and single wall carbon nanotubes. Electrochimica Acta, 54, 6347–6353. DOI: 10.1016/j.electacta.2009.05.074.CrossRefGoogle Scholar
  32. Nayak, R. R., Lee, K. Y., Shanmugharaj, A. M., & Ryu, S. H. (2007). Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. European Polymer Journal, 43, 4916–4923. DOI: 10.1016/j.eurpolymj.2007.04.012.CrossRefGoogle Scholar
  33. Ouyang, M., Huang, J.-L., Cheung, C. L., & Lieber, C. M. (2001). Energy gaps in “metallic” single-walled carbon nanotubes. Science, 292, 702–705. DOI: 10.1126/science.1058853.CrossRefGoogle Scholar
  34. Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. New York, NY, USA: Oxford University Press.Google Scholar
  35. Ren, X., Luo, Z., Du, J., & Wu, S. (2010). Theoretical binding affinities and spectroscopy of complexes formed by cyclobis(paraquat-p-anthrancene) with some pharmaceutical molecules. Russian Journal of Physical Chemistry A, 84, 826–830. DOI: 10.1134/S0036024410050201.CrossRefGoogle Scholar
  36. Ridley, J., & Zerner, M. C. (1973). An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theoretica Chimica Acta, 32, 111–134. DOI: 10.1007/BF00528484.CrossRefGoogle Scholar
  37. Smieško, M., & Remko, M. (2005). Structure and gas-phase stability of Zn(II)—molecule complexes. Chemical Papers, 59, 310–315.Google Scholar
  38. Šramko, M., Šille, J., Ježko, P., & Garaj, V. (2010). Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+. Chemical Papers, 64, 395–404. DOI: 10.2478/s11696-010-0005-y.CrossRefGoogle Scholar
  39. Stylianakis, M. M., Mikroyannidis, J. A., & Kymakis, E. (2010). A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Solar Energy Materials & Solar Cells, 94, 267–274. DOI: 10.1016/j.solmat.2009.09.013.CrossRefGoogle Scholar
  40. Su, N., Guo, Q., & Wu, S. (2008). Stability and spectroscopic studies on oxygenated armchair SWCNTs. Indian Journal of Chemistry Section A, 47A, 1473–1479.Google Scholar
  41. Sun, H., Yun, X., Wu, S., & Teng, Q. (2008). Theoretical studies on stabilities, 13C and 3He NMR spectroscopy of C84O derived from C84 (D 2d). Journal of Molecular Structure: THEOCHEM, 868, 71–77. DOI: 10.1016/j.theochem.2008.08.007.CrossRefGoogle Scholar
  42. Sun, Y., Du, J., Wang, Y., & Wu, S. (2010). Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids. Chemical Papers, 64, 515–522. DOI: 10.2478/s11696-010-0029-3.CrossRefGoogle Scholar
  43. Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, seperation and characterisation of the fullerenes C60 and C70: the third form of carbon. Journal of the Chemical Society, Chemical Communications, 1990, 1423–1425. DOI: 10.1039/C39900001423.CrossRefGoogle Scholar
  44. Van Lier, G., Fowler, P. W., De Proft, F., & Geerlings, P. (2002). A pentagon-proximity model for local aromaticity in fullerenes and nanotubes. The Journal of Physical Chemistry A, 106, 5128–5135. DOI: 10.1021/jp013642x.CrossRefGoogle Scholar
  45. von Ragué Schleyer, P., Maerker, C., Dransfeld, A., Jiao, H., & van Eikema Hommes, N. J. R. (1996). Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. Journal of the American Chemical Society, 118, 6317–6318. DOI: 10.1021/ja960582d.CrossRefGoogle Scholar
  46. Wang, Z., & Wu, S. (2007). Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules. Chemical Papers, 61, 313–320. DOI: 10.2478/s11696-007-0039-y.CrossRefGoogle Scholar
  47. Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 8251–8260. DOI: 10.1021/ja00179a005.CrossRefGoogle Scholar
  48. Yu, X., Yi, B., Yu, W., & Wang, X. (2008). DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers. Chemical Papers, 62, 623–629. DOI: 10.2478/s11696-008-0066-3.CrossRefGoogle Scholar
  49. Yu, X., Yu, W., Yi, B., & Wang, X. (2009). Artificial neural network prediction of steric hindrance parameter of polymers. Chemical Papers, 63, 432–437. DOI: 10.2478/s11696-009-0036-4.CrossRefGoogle Scholar
  50. Zhang, W., Wang, Y., Zhang, H., & Wu, S. (2010). DFT study on stability and spectroscopy of C84O2 based on C84 (D 2). Journal of Molecular Structure: THEOCHEM, 941, 61–65. DOI: 10.1016/j.theochem.2009.11.002.CrossRefGoogle Scholar
  51. Zhang, Y., Li, T., & Teng, Q.-W. (2008). Stabilities and spectroscopy of hydrogen bonding complexes formed by 2,4-bis(acrylamido)pyrimidines. Chinese Journal of Chemistry, 26, 1567–1572. DOI: 10.1002/cjoc.200890283.CrossRefGoogle Scholar
  52. Zhao, H., Zhou, J., Hu, L., & Teng, Q. (2009). Theoretical studies on electronic structures and NMR spectra of oligo(4-vinylpyridine). Chinese Journal of Chemistry, 27, 1687–1691. DOI: 10.1002/cjoc.200990283.CrossRefGoogle Scholar
  53. Zhu, Z., Wu, S., & Zhang, Y. (2008). The electronic structures and spectra of conducting pentacene derivatives. Russian Journal of Physical Chemistry A, 82, 2293–2298. DOI: 10.1134/S0036024408130220.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Xinwei Huang
    • 1
    • 2
  • Zhengyuan Tu
    • 2
  • Zipeng Ma
    • 1
  • Shi Wu
    • 1
    Email author
  1. 1.Department of ChemistryZhejiang UniversityHangzhouChina
  2. 2.Department of Material Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations