Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 338–344 | Cite as

Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation

  • Viera Poláčková
  • Vladimír Bariak
  • Radovan ŠebestaEmail author
  • Štefan Toma
Original Paper

Abstract

The Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated cyclic ketones was studied under controlled microwave irradiation conditions. A variety of catalysts, bases and solvents was explored in order to achieve optimum yields in the shortest possible reaction time. Under optimised conditions (Pd(OAc)2/2,2′-bipyridine and KF in a mixture of toluene, water, and acetic acid and 10 min microwave irradiation), a range of arylboronic acids was successfully added to several cyclic enones. With chiral phosphane ligands, a promising enantioselectivity was obtained (85 % ee).

Keywords

palladium catalysis Michael addition arylboronic acid microwave irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almansa, R., Guijarro, D., & Yus, M. (2008). Microwaveaccelerated enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl)imines catalysed by β-aminoalcohols with the prolinol skeleton. Tetrahedron: Asymmetry, 19, 1376–1380. DOI: 10.1016/j.tetasy.2008.05.005.CrossRefGoogle Scholar
  2. Almássy, A., Barta, K., Franciò, G., Šebesta, R., Leitner, W., & Toma, Š. (2007). [5]Ferrocenophane based ligands for stereoselective Rh-catalyzed hydrogenation and Cu-catalyzed Michael addition. Tetrahedron: Asymmetry, 18, 1893–1898. DOI: 10.1016/j.tetasy.2007.08.011.CrossRefGoogle Scholar
  3. Alonso, F., Beletskaya, I. P., & Yus, M. (2008). Non-conventional methodologies for transition-metal catalysed carbon-carbon coupling: a critical overview. Part 2: The Suzuki reaction. Tetrahedron, 64, 3047–3101. DOI: 10.1016/j.tet.2007.12.036.CrossRefGoogle Scholar
  4. Arnold, L. A., Imbos, R., Mandoli, A., de Vries, A. H. M., Naasz, R., & Feringa, B. L. (2000). Enantioselective catalytic conjugate addition of dialkylzinc reagents using copper-phosphoramidite complexes; ligand variation and non-linear effects. Tetrahedron, 56, 2865–2878. DOI: 10.1016/s0040-4020(00)00142-3.CrossRefGoogle Scholar
  5. Barge, A., Tagliapietra, S., Tei, L., Cintas, P., & Cravotto, G. (2008). Pd-catalyzed reactions promoted by ultrasound and/or microwave irradiation. Current Organic Chemistry, 12, 1588–1612. DOI: 10.2174/138527208786786327.CrossRefGoogle Scholar
  6. Bedford, R. B., Betham, M., Charmant, J. P. H., Haddow, M. F., Orpen, A. G., Pilarski, L. T., Coles, S. J., & Hursthouse, M. B. (2007). Simple palladacyclic and platinacyclic catalysts for the 1,4-conjugate addition of arylboronic acids and arylsiloxanes to enones. Organometallics, 26, 6346–6353. DOI: 10.1021/om700724c.CrossRefGoogle Scholar
  7. Cammidge, A. N., & Crépy, K. V. L. (2004). Synthesis of chiral binaphthalenes using the asymmetric Suzuki reaction. Tetrahedron, 60, 4377–4386. DOI: 10.1016/j.tet.2003.11.095.CrossRefGoogle Scholar
  8. Cho, C. S., Motofusa, S.-i., Ohe, K., Uemura, S., & Shim, S. C. (1995). A new catalytic activity of antimony(III) chloride in palladium(0)-catalyzed conjugate addition of aromatics to α,β-unsaturated ketones and aldehydes with sodium tetraphenylborate and arylboronic acids. The Journal of Organic Chemistry, 60, 883–888. DOI: 10.1021/jo00109a019.CrossRefGoogle Scholar
  9. Comins, D. L., Brooks, C. A., & Ingalls, C. L. (2001). Reduction of N-acyl-2,3-dihydro-4-pyridones to N-acyl-4-piperidones using zinc/acetic acid. The Journal Organic Chemistry, 66, 2181–2182. DOI: 10.1021/jo001609l.CrossRefGoogle Scholar
  10. Fujio, M., Tanaka, M., Wu, X.-M., Funakoshi, K., Sakai, K., & Suemune, H. (1998). ortho-Halogeno substituents effect in asymmetric cyclization of 4-aryl-4-pentenals using a rhodium catalyst. Chemistry Letters, 27, 881–882. DOI: 10.1246/cl.1998.881.CrossRefGoogle Scholar
  11. Gavande, N., Johnston, G. A. R., Hanrahan, J. R., & Chebib, M. (2010). Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531). Organic and Biomolecular Chemistry, 8, 4131–4136. DOI: 10.1039/C0OB00004C.CrossRefGoogle Scholar
  12. Genov, M., Almorín, A., & Espinet, P. (2007). Microwave assisted asymmetric Suzuki-Miyaura and Negishi crosscoupling reactions: synthesis of chiral binaphthalenes. Tetrahedron: Asymmetry, 18, 625–627. DOI: 10.1016/j.tetasy.2007.03.001.CrossRefGoogle Scholar
  13. Genov, M., Almorín, A., & Espinet, P. (2006). Efficient synthesis of chiral 1,1′-binaphthalenes by the asymmetric Suzuki-Miyaura reaction: Dramatic synthetic improvement by simple purification of naphthylboronic acids. Chemistry — A European Journal, 12, 9346–9352. DOI: 10.1002/chem.200600616.CrossRefGoogle Scholar
  14. Genov, M., Salas, G., & Espinet, P. (2008). Effect of microwave heating in the asymmetric addition of dimethylzinc to aldehydes. Journal of Organometallic Chemistry, 693, 2017–2020. DOI: 10.1016/j.jorganchem.2008.03.003.CrossRefGoogle Scholar
  15. Gini, F., Hessen, B., & Minnaard, A. J. (2005). Palladiumcatalyzed enantioselective conjugate addition of arylboronic acids. Organic Letters, 7, 5309–5312. DOI: 10.1021/ol05222 2d.CrossRefGoogle Scholar
  16. Gutnov, A. (2008). Palladium-catalyzed asymmetric conjugate addition of aryl-metal species. European Journal of Organic Chemistry, 2008, 4547–4554. DOI: 10.1002/ejoc.200800541.CrossRefGoogle Scholar
  17. Gutsche, C. D., Strohmayer, H. F., & Chang, J. M. (1958). Ring enlargements VI. The diazomethane-carbonyl reaction: Product ratios from the reactions of diazomethane with various substituted 2-phenylcyclohexanons. The Journal Organic Chemistry, 23, 1–5. DOI: 10.1021/jo01095a001.CrossRefGoogle Scholar
  18. Hayashi, T., Mise, T., Fukushima, M., Kagotani, M., Nagashima, N., Hamada, Y., Matsumoto, A., Kawakami, S., Konishi, M., Yamamoto, K., & Kumada, M. (1980). Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. I. Preparation of chiral ferrocenylphosphines. Bulletin of the Chemical Society of Japan, 53, 1138–1151. DOI: 10.1246/bcsj.53.1138.CrossRefGoogle Scholar
  19. He, P., Lu, Y., Dong, C.-G., & Hu, Q.-S. (2007). Anionic fourelectron donor-based palladacycles as catalysts for addition reactions of arylboronic acids with α,β-unsaturated ketones, aldehydes, and α-ketoesters. Organic Letters, 9, 343–346. DOI: 10.1021/ol062814b.CrossRefGoogle Scholar
  20. Helan, V., Mills, A., Drewry, D., & Grant, D. (2010). A rapid three-component MgI2-mediated synthesis of 3,3-pyrollidinyl spirooxindoles. The Journal of Organic Chemistry, 75, 6693–6695. DOI: 10.1021/jo101077g.CrossRefGoogle Scholar
  21. Itooka, R., Iguchi, Y., & Miyaura, N. (2003). Rhodiumcatalyzed 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds: Large accelerating effects of bases and ligands. The Journal of Organic Chemistry, 68, 6000–6004. DOI: 10.1021/jo0207067.CrossRefGoogle Scholar
  22. Kantam, M. L., Subrahmanyam, V. B., Kumar, K. B. S., Venkanna, G. T., & Sreedhar, B. (2008). Rhodium fluoroapatite catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carbonyl compounds. Helvetica Chimica Acta, 91, 1947–1953. DOI: 10.1002/hlca.200890208.CrossRefGoogle Scholar
  23. Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43, 6250–6284. DOI: 10.1002/anie.200400655.CrossRefGoogle Scholar
  24. Kappe, C. O., & Dallinger, D. (2009). Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature. Molecular Diversity, 13, 71–193. DOI: 10.1007/s11030-009-9138-8.CrossRefGoogle Scholar
  25. Kappe, C. O., Dallinger, D., & Murphree, S. S. (2009). Practical microwave synthesis for organic chemists: Strategies, instruments, and protocols. Weinheim, Germany: Wiley-VCH.Google Scholar
  26. Kappe, C. O., & Stadler, A. (2005). Microwaves in organic and medicinal chemistry (Series: Methods and principles in medicinal chemistry, Vol. 25). Weinheim, Germany: Wiley-VCH.Google Scholar
  27. Kováčová, S., Kováčiková, L., Lácová, M., Boháč, A., & Sališová, M. (2010). Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds. Chemical Papers, 64, 806–811. DOI: 10.2478/s11696-010-0059-x.CrossRefGoogle Scholar
  28. Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwaveaccelerated homogeneous catalysis in organic chemistry. Accounts of Chemical Research, 35, 717–727. DOI: 10.1021/ar010074v.CrossRefGoogle Scholar
  29. Lin, S., & Lu, X. (2006). Palladium-bipyridine catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carbonyl compounds in aqueous media. Tetrahedron Letters, 47, 7167–7170. DOI: 10.1016/j.tetlet.2006.07.154.CrossRefGoogle Scholar
  30. Lu, X., & Lin, S. (2005). Pd(II)-bipyridine catalyzed conjugate addition of arylboronic acid to α,β-unsaturated carbonyl compounds. The Journal of Organic Chemistry, 70, 9651–9653. DOI: 10.1021/jo051561h.CrossRefGoogle Scholar
  31. Mariz, R., Luan, X., Gatti, M., Linden, A., & Dorta, R. (2008). A chiral bis-sulfoxide ligand in late-transition metal catalysis; rhodium-catalyzed asymmetric addition of arylboronic acids to electron-deficient olefins. Journal of the American Chemical Society, 130, 2172–2173. DOI: 10.1021/ja710665q.CrossRefGoogle Scholar
  32. Nishikata, T., Yamamoto, Y., & Miyaura, N. (2004). 1,4-Addition of arylboronic acids and arylsiloxanes to α,β-unsaturated carbonyl compounds via transmetalation to dicationic palladium(II) complexes. Organometallics, 23, 4317–4324. DOI: 10.1021/om0498044.CrossRefGoogle Scholar
  33. Poláčková, V., & Toma, Š. (2007). Effect of microwave irradiation on the reactivity of chloroarenes in Suzuki—Miyaura reaction. Chemical Papers, 61, 41–45. DOI: 10.2478/s11696-006-0093-x.CrossRefGoogle Scholar
  34. Poláčková, V., Toma, Š., & Augustínová, I. (2006). Microwavepromoted cross-coupling of acid chlorides with arylboronic acids: a convenient method for preparing aromatic ketones. Tetrahedron, 62, 11675–11678. DOI: 10.1016/j.tet.2006.09.055.CrossRefGoogle Scholar
  35. Poláčková, V., Toma, Š., & Kappe, C. O. (2007). Microwaveassisted arylation of rac-(E)-3-acetoxy-1,3-diphenylprop-1-ene with arylboronic acids. Tetrahedron, 63, 8742–8745. DOI: 10.1016/j.tet.2007.06.045.CrossRefGoogle Scholar
  36. Shintani, R., Duan, W.-L., Nagano, T., Okada, A., & Hayashi, T. (2005). Chiral phosphine-olefin bidentate ligands in asymmetric catalysis: Rhodium-catalyzed asymmetric 1,4-addition of aryl boronic acids to maleimides. Angewandte Chemie International Edition, 44, 4611–4614. DOI: 10.1002/anie.200501305.CrossRefGoogle Scholar
  37. Singh, B. K., Kaval, N., Tomar, S., van der Eycken, E., & Parmar, V. S. (2008). Transition metal-catalyzed carbon-carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Organic Process Research & Development, 12, 468–474. DOI: 10.1021/op800047f.CrossRefGoogle Scholar
  38. Suzuma, Y., Yamamoto, T., Ohta, T., & Ito, Y. (2007). Asymmetric 1,4-addition reaction of arylboronic acid to enone catalyzed by palladium with ferrocene-based phosphine ligand. Chemistry Letters, 36, 470–471. DOI: 10.1246/cl.2007.470.CrossRefGoogle Scholar
  39. Takaya, Y., Ogasawara, M., & Hayashi, T. (1999). Rhodiumcatalyzed asymmetric 1,4-addition of arylboron compounds generated in situ from aryl bromides. Tetrahedron Letters, 40, 6957–6961. DOI: 10.1016/s0040-4039(99)01412-4.CrossRefGoogle Scholar
  40. Takaya, Y., Ogasawara, M., Hayashi, T., Sakai, M., & Miyaura, N. (1998). Rhodium-catalyzed asymmetric 1,4-addition of aryl- and alkenylboronic acids to enones. Journal of the American Chemical Society, 120, 5579–5580. DOI: 10.1021/ja980666h.CrossRefGoogle Scholar
  41. Tierney, J. P., & Lidström, P. (Eds.) (2005). Microwave assisted organic synthesis. Oxford, UK: Wiley-Blackwell.Google Scholar
  42. Togni, A., Breutel, C., Schnyder, A., Spindler, F., Landert, H., & Tijani, A. (1994). A novel easily accessible chiral ferrocenyldiphosphine for highly enantioselective hydrogenation, allylic alkylation, and hydroboration reactions. Journal of the American Chemical Society, 116, 4062–4066. DOI: 10.1021/ja00088a047.CrossRefGoogle Scholar
  43. Vandyck, K., Matthys, B., Willen, M., Robeyns, K., Van Meervelt, L., & Van der Eycken, J. (2006). Rhodiumcatalyzed asymmetric conjugate additions of boronic acids to enones using DIPHONANE: A novel chiral bisphosphine ligand. Organic Letters, 8, 363–366. DOI: 10.1021/ol0522788.CrossRefGoogle Scholar
  44. Veverková, E., & Toma, Š. (2008). Study of CuI catalyzed coupling reactions of aryl bromides with imidazole and aliphatic amines under microwave dielectric heating. Chemical Papers, 62, 334–338. DOI: 10.2478/s11696-008-0033-z.CrossRefGoogle Scholar
  45. Xu, Q., Zhang, R., Zhang, T., & Shi, M. (2010). Asymmetric 1,4-addition of arylboronic acids to 2,3-dihydro-4-pyridones catalyzed by axially chiral NHC-Pd(II) complexes. The Journal of Organic Chemistry, 75, 3935–3937. DOI: 10.1021/jo1006224.CrossRefGoogle Scholar
  46. Yamamoto, T., Iizuka, M., Ohta, T., & Ito, Y. (2006). Palladium catalyzed conjugate 1,4-addition of organoboronic acids to α,β-unsaturated ketones. Chemistry Letters, 35, 198–199. DOI: 10.1246/cl.2006.198.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Viera Poláčková
    • 1
  • Vladimír Bariak
    • 1
  • Radovan Šebesta
    • 1
    Email author
  • Štefan Toma
    • 1
  1. 1.Department of Organic Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations