Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 367–372 | Cite as

Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity

  • Pavel MučajiEmail author
  • Milan Nagy
  • Anna Záhradníková
  • Ivana Holková
  • Lýdia Bezáková
  • Emil Švajdlenka
  • Tibor Liptaj
  • Nadežda Prónayová
Original Paper

Abstract

The present work summarizes results of isolation and identification of polar constituents of the methanolic extract of Ligustrum vulgare L. leaves and of the evaluation of inhibiting activity of selected isolates on rat lung cytosol fraction lipoxygenase. Six different compounds were isolated from the ethylacetate and butanol portions of the methanolic extract (hydroxytyrosol and its glucoside, ligustroflavon, oleuropein, acteoside, echinacoside). The inhibitory activity of oleuropein, echinacoside and the water infusion of Ligustrum vulgare leaves tested on LOX was expressed as IC50. Kinetic parameters (K M, V max) and type of inhibition were determined. As the most effective in competitive inhibition of LOX, oleuropein was proved.

Keywords

Ligustrum vulgare L. oleuropein echinacoside lipoxigenase activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezáková, L., Grančai, D., Obložinská, I., Pauliková, I., Garaj, V., & Gáplovsky, M. (2007). Effect of flavonoids and cynarine from Cynara cardunculus L. on lipoxygenase activity. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 54, 48–53.Google Scholar
  2. Bezáková, L., Misik, V., Máleková, L., Svajdlenka, E., & Kostálová, D. (1996). Lipoxygenase inhibition and antioxidant properties of bisbenzylisoquinoline alkaloids isolated from Mahonia aquifolium. Pharmazie, 51, 758–761.Google Scholar
  3. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.CrossRefGoogle Scholar
  4. de la Puerta, R., Ruiz Gutierrez, V., & Hoult, J. R. S. (1999). Inhibition of leukocyte 5- lipoxygenase by phenolics from virgin olive oil. Biochemical Pharmacology, 57, 445–449. DOI: 10.1016/S0006-2952(98)00320-7.CrossRefGoogle Scholar
  5. Franzyk, H., Olsen, C. E., & Jansen, S. R. (2004). Dopaol 2-keto- and 2,3-diketoglycosides from Chelone obliqua. Journal of Natural Products, 67, 1052–1054. DOI: 10.1021/np0499416.CrossRefGoogle Scholar
  6. Hammermann, A. F., Damirov, J. A., & Sokolov, W. S. (1971). Einige aussichtsreiche Pflanzen der Volksmedizin von Azerbajdschan. Planta Medica, 20, 374–380. DOI: 10.1055/s-0028-1099719.CrossRefGoogle Scholar
  7. Hromádková, Z., Hirsch, J., & Ebringerová, A. (2010). Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides. Chemical Papers, 64, 663–672. DOI: 10.2478/s11696-010-0054-2.CrossRefGoogle Scholar
  8. Jiménez, J. T., O’Connell, S., Lyons, H., Bradley, B., & Hall, M. (2010). Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum. Chemical Papers, 64, 434–442. DOI: 10.2478/s11696-010-0024-8.CrossRefGoogle Scholar
  9. Kemal, C., Louis-Flamberg, P., Krupinski-Olsen, R., & Shorter, A. L. (1987). Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry, 26, 7064–7072. DOI: 10.1021/bi00396a031.CrossRefGoogle Scholar
  10. Kiss, A. K., Mańk, M., & Melzig, M. F. (2008). Dual inhibition of metallopeptidases ACE and NEP by extracts, and iridoids from Ligustrum vulgare L. Journal of Ethnopharmacology, 120, 220–225. DOI: 10.1016/j.jep.2008.08.015.CrossRefGoogle Scholar
  11. Kulkarni, A. P., Cai, Y., & Richards, I. S. (1992). Rat pulmonary lipoxygenase: dioxygenase activity and role of xenobiotic metabolism. International Journal of Biochemistry, 24, 255–261. DOI: 10.1016/0020-711X(92)90255-Y.CrossRefGoogle Scholar
  12. Ma, S.-C., He, Z.-D., Deng, X.-L., But, P. P.-H., Ooi, V. E.-C., Xu, H.-X., Lee, S. H.-S., & Lee, S.-F. (2001). In vitro evaluation of secoiridoid glucosides from the fruits of Ligustrum lucidum as antiviral agents. Chemical & Pharmaceutical Bulletin, 49, 1471–1473. DOI: 10.1248/cpb.49.1471.CrossRefGoogle Scholar
  13. Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The systematic identification of flavonoids. New York, NY, USA: Springer-Verlag.Google Scholar
  14. Mučaji, P., Nagy, M., Grančai, D., & Švajdlenka, E. (2006). Flavonoidné glykozidy Ligustrum vulgare L. Farmaceutický Obzor, 75(10–11), 266–271.Google Scholar
  15. Nagao, T., Abe, F., & Okabe, H. (2001). Antiproliferative constituents in the plants 7. leaves of Clerodendron bungei and leaves and bark of C. trichotomum. Biological & Pharmaceutical Bulletin, 24, 1338–1342. DOI: 10.1248/bpb.24.1338.CrossRefGoogle Scholar
  16. Nagy, M., Križkovčaji, P., Kontšeková, Z., Šeršeň, F., & Krajčovič, J. (2009). Antimutagenic activity and radical scavenging activity of water infusions and phenolics from Ligustrum plants leaves. Molecules, 14, 509–518. DOI: 10.3390/molecules14010509.CrossRefGoogle Scholar
  17. Nagy, M., Spilková, J., Vrchovská, V., Kontšeková, Z., Šeršeň, F., Mučaji, P., & Grančai, D. (2006). Free radical scavenging activity of different extracts and some constituents from the leaves of Ligustrum vulgare and L. delavayanum. Fitoterapia, 77, 395–397. DOI: 10.1016/j.fitote.2006.04.010.CrossRefGoogle Scholar
  18. Pan, L. T., He, X. P., & Yanag, L. Y. (2002). Studies on chemical constituents in the leaf of Ligustrum delavayanum. Zhongguo Zhong Yao Za Zhi, 27, 754–756.Google Scholar
  19. Pieroni, A., & Pachaly, P. (2000a). An ethnopharmacological study on common privet (Ligustrum vulgare) and phillyrea (Phillyrea latifolia). Fitoterapia, 71,Supplement 1, S89–S94. DOI: 10.1016/S0367-326X(00)00182-9.CrossRefGoogle Scholar
  20. Pieroni, A., & Pachaly, P. (2000b). Isolation and structure elucidation of ligustroflavone, a new apigenin triglycoside from the leaves Ligustrum vulgare L. Pharmazie, 55, 78–80.Google Scholar
  21. Scogin, R. (1992). The distribution of acteoside among angiosperms. Biochemical Systematics and Ecology, 20, 477–480. DOI: 10.1016/0305-1978(92)90090-Z.CrossRefGoogle Scholar
  22. Shoemaker, M., Hamilton, B., Dairkee, S. H., Cohen, I., & Campbell, M. J. (2005). In vitro anticancer activity of twelve Chinese medicinal herbs. Phytotherapy Research, 19, 649–651. DOI: 10.1002/ptr.1702.CrossRefGoogle Scholar
  23. Stojanović-Radić, Z., Comić, L., Radulović, N., Dekić, M., Randelović, V., & Stefanović, O. (2010). Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae). Chemical Papers, 64, 368–377. 10.2478/s11696-010-0014-x.CrossRefGoogle Scholar
  24. Šeršeň, F., Mučaji, P., Grančai, D., Nagy, M., & Švajdlenka, E. (2006). Constituents of butanol extract from leaves of Ligustrum vulgare L. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 53, 253–261.Google Scholar
  25. Šmejkal, K., Babula, P., Šlapetová, T., Brognara, E., Dall’Acqua, S., Žemlička, M., Innocenti, G., & Cvačka, J. (2008). Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa fruits. Planta Medica, 74, 1488–1491. DOI: 10.1055/s-2008-1081339.CrossRefGoogle Scholar
  26. Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D., & Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist, 163, 547–561. DOI: 10.1111/j.1469-8137.2004.01126.x.CrossRefGoogle Scholar
  27. Wong, I. Y. F., He, Z.-D., Huang, Y., & Chen, Z.-Y. (2001). Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. Journal of Agricultural and Food Chemistry, 49, 3113–3119. DOI: 10.1021/jf0100604.CrossRefGoogle Scholar
  28. Yim, T. K., Wu, W. K., Pak, W. F., & Ko, K. M. (2001). Hepatoprotective action of an oleanolic acid-enriched extract of Ligustrum lucidum fruits is mediated through an enhancement on hepatic glutathione regeneration capacity in mice. Phytotherapy Research, 15, 589–592. DOI: 10.1002/ptr.878.CrossRefGoogle Scholar
  29. Young, R. N. (1999). Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? European Journal of Medicinal Chemistry, 34, 671–685. DOI: 10.1016/S0223-5234(99)00225-1.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Pavel Mučaji
    • 1
    Email author
  • Milan Nagy
    • 1
  • Anna Záhradníková
    • 1
  • Ivana Holková
    • 2
  • Lýdia Bezáková
    • 2
  • Emil Švajdlenka
    • 3
  • Tibor Liptaj
    • 4
  • Nadežda Prónayová
    • 4
  1. 1.Department of Pharmacognosy and Botany, Faculty of PharmacyComenius UniversityBratislavaSlovakia
  2. 2.Department of Cell and Molecular Biology of Drugs, Faculty of PharmacyComenius UniversityBratislavaSlovakia
  3. 3.Institute of Natural Drugs, Faculty of PharmacyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  4. 4.Department of NMR and Mass Spectroscopy, Institute of Analytical Chemistry, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations