Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 280–288 | Cite as

Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite

  • Mohsen Padervand
  • Mahboubeh Tasviri
  • Mohammad Reza GholamiEmail author
Original Paper

Abstract

Zeolite-based photocatalysts were prepared by the sol-gel and deposition methods. The photocatalysts were characterised by X-ray diffraction, nitrogen adsorption-desorption isotherms, FTIR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectrometry. The activity of the prepared photocatalysts was evaluated by the UV-induced degradation of acid blue 92, a textile dye in common use. The effect of various parameters, such as catalyst concentration, initial dye concentration, thiosulphate concentration and pH, on the rate and efficiency of the photocatalytic degradation of acid blue 92 was investigated. The results showed that each parameter influenced the degradation rate and efficiency in a particular way. It was also found that, under optimised conditions, Ag/AgBr/TiO2/zeolite exhibited the highest photocatalytic performance. A comparison of catalytic activity when exposed to visible light under the same conditions showed that the photocatalysts containing AgBr had the highest activity.

Keywords

zeolite TiO2 sol-gel method photocatalytic degradation acid blue 92 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anandan, S., & Yoon, M. (2003). Photocatalytic activities of the nano-sized TiO2 supported Y-zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 5–18. DOI: 10.1016/S1389-5567(03)00002-9.CrossRefGoogle Scholar
  2. Ao, C. H., & Lee, S. C. (2004). Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry, 161, 131–140. DOI: 10.1016/S1010-6030(03)00276-4.CrossRefGoogle Scholar
  3. Behar, D., & Fessenden, R. W. (1971). An investigation of radicals produced in the photolysis of thiosulfate solutions by electron spin resonance. Journal of Physical Chemistry, 75, 2752–2755. DOI: 10.1021/j100687a007.CrossRefGoogle Scholar
  4. Cao, J. J. (2004). Study on crystal structure of modified mordenite. Spectroscopy and Spectral Analysis, 24, 251–254. (in Chinese)Google Scholar
  5. Chen, C.-Y. (2009). Photocatalytic degradation of azo dye reactive orange 16 by TiO2. Water, Air & Soil Pollution, 202, 335–342. DOI: 10.1007/s11270-009-9980-4.CrossRefGoogle Scholar
  6. Druschel, G. K., Hamers, R. J., Luther, G. W., & Banfield, J. F. (2003). Kinetics and mechanism of trithionate and tetrathionate oxidation at low pH by hydroxyl radicals. Aquatic Geochemistry, 9, 145–164. DOI: 10.1023/B:AQUA.0000019495.91752.d7.CrossRefGoogle Scholar
  7. Elahifard, M. R., Rahimnejad, S., Haghighi, S., & Gholami, M. R. (2007). Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. Journal of the American Chemical Society, 129, 9552–9553. DOI: 10.1021/ja072492m.CrossRefGoogle Scholar
  8. Fernández, A., Lassaletta, G., Jiménez, V. M., Justo, A., González-Elipe, A. R., Herrmann, J.-M., Tahiri, H., & Ait-Ichou, Y. (1995). Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental, 7, 49–63. DOI: 10.1016/0926-3373(95)00026-7.CrossRefGoogle Scholar
  9. Gao, J., Li, S., Yang, W., Zhao, G., Bo, L., & Song, L. (2007). Preparation and photocatalytic activity of PANI/TiO2 composite film. Rare Metals, 26, 1–7. DOI: 10.1016/S1001-0521(07)60018-7.CrossRefGoogle Scholar
  10. Ghasemi, S., Rahimnejad, S., Rahman Setayesh, S., Hosseini, M., & Gholami, M. R. (2009a). Kinetic investigation of the photocatalytic degradation of acid blue 92 in aqueous solution using nanocrystalline TiO2 prepared in an ionic liquid. Progress in Reaction Kinetics and Mechanism, 34, 55–76. DOI: 10.3184/146867809X413247.CrossRefGoogle Scholar
  11. Ghasemi, S., Rahimnejad, S., Rahman Setayesh, S., Rohani, S., & Gholami, M. R. (2009b). Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. Journal of Hazardous Materials, 172, 1573–1578. DOI: 10.1016/j.jhazmat.2009.08.029.CrossRefGoogle Scholar
  12. Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., & Wu, J. (2008). Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and Pigments, 77, 327–334. DOI: 10.1016/j.dyepig.2007.01.026.CrossRefGoogle Scholar
  13. Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49, 1–14. DOI: 10.1016/j.apcatb.2003.11.010.CrossRefGoogle Scholar
  14. Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevska, T., Gunko, V. M., & Ryczkowski, J. (2005). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243–254. DOI: 10.1016/j.micromeso.2005.08.002.CrossRefGoogle Scholar
  15. Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., & Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied Surface Science, 252, 1410–1416. DOI: 10.1016/j.apsusc.2005.02.111.CrossRefGoogle Scholar
  16. Majdan, M., Kowalska-Ternes, M., Pikus, S., Staszczuk, P., Skrzypek, H., & Zięba, E. (2003). Vibrational and scanning electron microscopy study of the mordenite modified by Mn, Co, Ni, Cu, Zn and Cd. Journal of Molecular Structure, 649, 279–285. DOI: 10.1016/S0022-2860(03)00082-6.CrossRefGoogle Scholar
  17. Ooka, C., Yoshida, H., Suzuki, K., & Hattori, T. (2004). Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 67, 143–150. DOI: 10.1016/j.micromeso.2003.10.011.CrossRefGoogle Scholar
  18. Patterson, H. H., Gomez, R. S., Lu, H., & Yson, R. L. (2007). Nanoclusters of silver doped in zeolites as photocatalyst. Catalysis Today, 120, 168–173. DOI: 10.1016/j.cattod.2006.07.057.CrossRefGoogle Scholar
  19. Rashed, M. N., & El-Amin, A. A. (2007). Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. International Journal of Physical Sciences, 2, 73–81.Google Scholar
  20. Robert, D., Piscopo, A., Heintz, O., & Weber, J. V. (1999). Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light. Catalysis Today, 54, 291–296. DOI: 10.1016/S0920-5861(99)00190-X.CrossRefGoogle Scholar
  21. Ševčík, P., Čík, G., Vlna, T., & Mackuľak, T. (2009). Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide. Chemical Papers, 63, 249–254. DOI: 10.2478/s11696-008-0101-4.CrossRefGoogle Scholar
  22. Sleiman, M., Vildozo, D., Ferronato, C., & Chovelon, J.-M. (2007). Photocatalytic degradation of azo dye metanil yellow: Optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental, 77, 1–11. DOI: 10.1016/j.apcatb.2007.06.015.CrossRefGoogle Scholar
  23. Xu, Y., & Langford, C. H. (1997). Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y. Journal of Physical Chemistry B, 101, 3115–3121. DOI: 10.1021/jp962494l.CrossRefGoogle Scholar
  24. Xu, Y., & Langford, C. H. (1995). Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite A at low coverage. Journal of Physical Chemistry, 99, 11501–11507. DOI: 10.1021/j100029a031.CrossRefGoogle Scholar
  25. Zielińska, B., & Morawski, A. W. (2005). TiO2 photocatalysts promoted by alkali metals. Applied Catalysis B: Environmental, 55, 221–226. DOI: 10.1016/j.apcatb.2004.08.015.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  • Mohsen Padervand
    • 1
  • Mahboubeh Tasviri
    • 1
  • Mohammad Reza Gholami
    • 1
    Email author
  1. 1.Department of ChemistrySharif University of TechnologyTehranIran

Personalised recommendations