Advertisement

Chemical Papers

, Volume 65, Issue 3, pp 273–279 | Cite as

Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors

  • Kewen TangEmail author
  • Panliang Zhang
Original Paper

Abstract

Hydrophilic β-cyclodextrin (β-CD) and its derivatives are not soluble in organic liquids but they are highly soluble in water and can interact with enantiomers selectively to form diastereomeric complexes which enable their use as chiral selectors in chiral solvent extraction. In this paper, terbutaline enantiomers were extracted by hydrophilic β-CD derivatives in an aqueous/organic biphasic solvent system with racemic terbutaline in the organic phase and β-CD in the aqueous phase. Five β-CD derivatives, namely: methyl-β-cyclodextrin (Me-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), 2-hydroxyethyl-β-cyclodextrin (2-HE-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) and (4-sulfobutylether)-β-cyclodextrin (SBE-β-CD) were used as hydrophilic selectors, respectively. Process variables affecting extraction efficiency were investigated, namely influence of the type of organic solvents and β-CD derivatives, concentrations of selectors and terbutaline enantiomers, pH, and temperature. Experimental results show that the efficiency of extraction depends, often strongly, on process variables. All five β-CD derivatives studied preferentially extract the more biologically active (R)-terbutaline from the organic phase; HP-β-CD has the strongest recognition ability. The maximum enantioselectivity (α) of 1.42 was achieved under optimal conditions: pH 7.0 and temperature of 5°C. Utilization of the extraction method for separation of terbutaline enantiomers is expected to be cheap and easy to scale up to commercial scale.

Keywords

chiral separation reactive extraction β-cyclodextrin derivatives terbutaline enantiomers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameyibor, E., & Stewart, J. T. (1997). Enantiomeric HPLC separation of selected chiral drugs using native and derivatized β-cyclodextrins as chiral mobile phase additives. Journal of Liquid Chromatography & Related Technologies, 20, 855–869. DOI: 10.1080/10826079708013658.CrossRefGoogle Scholar
  2. Bechet, I., Paques, P., Fillet, M., Hubert, P., & Crommen, J. (1995). Chiral separation of basic drugs by capillary zone electrophoresis with cyclodextrin additives. Electrophoresis, 15, 818–823. DOI: 10.1002/elps.11501501115.CrossRefGoogle Scholar
  3. Colera, M., Costero, A., Gaviña, P., & Gil, S. (2005). Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 16, 2673–2679. DOI: 10.1016/j.tetasy.2005.06.039.CrossRefGoogle Scholar
  4. De Camp, W. H. (1989). The FDA perspective on the development of stereoisomers. Chirality, 1, 2–6. DOI: 10.1002/chir.530010103.CrossRefGoogle Scholar
  5. Gratz, S. R., & Stalcup, A. M. (1998). Enantiomeric separations of terbutaline by CE with a sulfated β-cyclodextrin chiral selector: A quantitative binding study. Analytical Chemistry, 70, 5166–5171. DOI: 10.1021/ac980780i.CrossRefGoogle Scholar
  6. Hallett, A. J., Kwant, G. J., & de Vries, J. G. (2009). Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds. Chemistry — A European Journal, 15, 2111–2120. DOI: 10.1002/chem.200800797.CrossRefGoogle Scholar
  7. Hutt, A. J. (1991). Drug chirality: Impact on pharmaceutical regulation. Chirality, 3, 161–164. DOI: 10.1002/chir.530030 303.CrossRefGoogle Scholar
  8. Jiao, F. P., Chen, X. Q., Hu, W. G., Ning, F. R., & Huang, K. L. (2007). Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors. Chemial Papers, 61, 326–328. DOI: 10.2478/s11696-007-0041-4.CrossRefGoogle Scholar
  9. Kellner, K.-H., Blasch, A., Chmiel, H., Lämmerhofer, M., & Lindner, W. (1997). Enantioseparation of N-protected α-amino acid derivatives by liquid-liquid extraction technique employing stereoselective ion-pair formation with a carbamoylated quinine derivative. Chirality, 9, 268–273. DOI: 10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-L.CrossRefGoogle Scholar
  10. Keurentjes, J. T. F., Nabuurs, L. J. W. M., & Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-X.CrossRefGoogle Scholar
  11. Kim, K. H., Kim, D. S., Hong, S.-P., & Keon, O. S. (2000). Reversed-phase high performance liquid chromatographic separation of the enantiomers of terbutaline by derivatization with 2,3,4,6-tetra-o-acetyl-β-D-glucopyranosyl isothio cyanate. Archives of Pharmacal Research, 23, 26–30. DOI: 10.1007/BF02976461.CrossRefGoogle Scholar
  12. Kim, K. H., & Park, Y. H. (1998). Enantioselective inclusion between terbutaline enantiomers and hydroxypropyl-β-cyclodextrin. International Journal of Pharmaceutics, 175, 247–253. DOI: 10.1016/S0378-5173(98)00278-6.CrossRefGoogle Scholar
  13. Koska, J., & Haynes, C. A. (2001). Modelling multiple chemical equilbria in chiral partition systems. Chemical Engineering Science, 56, 5853–5864. DOI: 10.1016/S0009-2509(00)00419-X.CrossRefGoogle Scholar
  14. Liu, Y., You, C.-C., Wada, T., & Inoue, Y. (1999). Molecular recognition studies on supramolecular systems. 22. Size, shape, and chiral recognition of aliphatic alcohols by organoselenium-modified cyclodextrins. The Journal of Organic Chemistry, 64, 3630–3634. DOI: 10.1021/jo982483j.CrossRefGoogle Scholar
  15. Maier, N. M., Franco, P., & Lindner, W. (2001). Separation of enantiomers: needs, challenges, perspectives. Journal of Chromatography A, 906, 3–33. DOI: 10.1016/S0021-9673(00)00532-X.CrossRefGoogle Scholar
  16. O’Brien, T., Crocker, L., Thompson, R., Thompson, K., Toma, P. H., Conlon, D. A., Feibush, B., Moeder, C., Bicker, G., & Grinberg, N. (1997). Mechanistic aspects of chiral discrimination on modified cellulose. Analytical Chemistry, 69, 1999–2007. DOI: 10.1021/ac961241l.CrossRefGoogle Scholar
  17. Pietraszkiewicz, M., Koźbiał, M., & Pietraszkiewicz, O. (1998). Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from Dmannose. Journal of Membrane Science, 138, 109–113. DOI: 10.1016/S0376-7388(97)00218-4.CrossRefGoogle Scholar
  18. Prelog, V., Kovačević, M., & Egli, M. (1989). Lipophilic tartaric acid esters as enantioselective ionophores. Angewandte Chemie International Edition, 28, 1147–1152. DOI: 10.1002/anie.198911473.CrossRefGoogle Scholar
  19. Rekharsky, M. V., & Inoue, Y. (1998). Complexation thermodynamics of cyclodextrins. Chemical Reviews, 98, 1875–1918. DOI: 10.1021/cr970015o.CrossRefGoogle Scholar
  20. Rouhi, A. M. (2003). Chiral business. Chemical & Engineering News, 81, 45–55.CrossRefGoogle Scholar
  21. Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2006). Influence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether. Journal of Chemical Technology and Biotechnology, 81, 588–597. DOI: 10.1002/jctb.1434.CrossRefGoogle Scholar
  22. Schuur, B., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2010). Experimental and modeling studies on the enantioseparation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid-liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 65, 4682–4690. DOI: 10.1016/j.ces.2010.05.015.CrossRefGoogle Scholar
  23. Tan, B., Luo, G., & Wang, J. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021.CrossRefGoogle Scholar
  24. Tan, B., Luo, G., & Wang, J. (2006). Enantioseperation of amino acids by co-extractants with di(2-ethylhexyl)phosphoric acid and tartaric acid derivatives. Tetrahedron: Asymmetry, 17, 883–891. DOI: 10.1016/j.tetasy.2006.01.038.CrossRefGoogle Scholar
  25. Tang, K., Chen, Y., Huang, K., & Liu, J. (2007). Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 18, 2399–2408. DOI: 10.1016/j.tetasy.2007.09.031.CrossRefGoogle Scholar
  26. Tang, K., Chen, Y., & Liu, J. (2008). Resolution of zopiclone enantiomers by biphasic recognition chiral extraction. Separation and Purification Technology, 62, 681–686. DOI: 10.1016/j.seppur.2008.03.029.CrossRefGoogle Scholar
  27. Tang, K., Song, L., Liu, Y., Pan, Y., & Jiang, X. (2010). Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chemical Engineering Journal, 158, 411–417. DOI: 10.1016/j.cej.2010.01.009.CrossRefGoogle Scholar
  28. Tang, K., Yi, J., Liu, Y., Jiang, X., & Pan, Y. (2009). Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chemical Engineering Science, 64, 4081–4088. DOI: 10.1016/j.ces.2009.06.029.CrossRefGoogle Scholar
  29. Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., & Feringa, B. L. (2009). Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes. The Journal of Organic Chemistry, 74, 6526–6533. DOI: 10.1021/jo901002d.CrossRefGoogle Scholar
  30. Viegas, R. M. C., Afonso, C. A. M., Crespo, J. G., & Coelhoso, I. M. (2007). Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 53, 224–234. DOI: 10.1016/j.seppur.2006.07.010.CrossRefGoogle Scholar
  31. Wang, X., Zeng, H., Wei, Y., & Lin, J.-M. (2006). A reversible fluorescence sensor based on insoluble β-cyclodextrin polymer for direct determination of bisphenol A (BPA). Sensors and Actuators, B: Chemical, 114, 565–572. DOI: 10.1016/j.snb.2005.06.020.CrossRefGoogle Scholar
  32. Zhou, S., Ouyang, J., Baeyens, W. R. G., Zhao, H., & Yang, Y. (2006). Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-β-cyclodextrin as chiral selector. Journal of Chromatography A, 1130, 296–301. DOI: 10.1016/j.chroma.2006.05.055.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangHunan, China

Personalised recommendations