Skip to main content
Log in

Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Hydrophilic β-cyclodextrin (β-CD) and its derivatives are not soluble in organic liquids but they are highly soluble in water and can interact with enantiomers selectively to form diastereomeric complexes which enable their use as chiral selectors in chiral solvent extraction. In this paper, terbutaline enantiomers were extracted by hydrophilic β-CD derivatives in an aqueous/organic biphasic solvent system with racemic terbutaline in the organic phase and β-CD in the aqueous phase. Five β-CD derivatives, namely: methyl-β-cyclodextrin (Me-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), 2-hydroxyethyl-β-cyclodextrin (2-HE-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) and (4-sulfobutylether)-β-cyclodextrin (SBE-β-CD) were used as hydrophilic selectors, respectively. Process variables affecting extraction efficiency were investigated, namely influence of the type of organic solvents and β-CD derivatives, concentrations of selectors and terbutaline enantiomers, pH, and temperature. Experimental results show that the efficiency of extraction depends, often strongly, on process variables. All five β-CD derivatives studied preferentially extract the more biologically active (R)-terbutaline from the organic phase; HP-β-CD has the strongest recognition ability. The maximum enantioselectivity (α) of 1.42 was achieved under optimal conditions: pH 7.0 and temperature of 5°C. Utilization of the extraction method for separation of terbutaline enantiomers is expected to be cheap and easy to scale up to commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ameyibor, E., & Stewart, J. T. (1997). Enantiomeric HPLC separation of selected chiral drugs using native and derivatized β-cyclodextrins as chiral mobile phase additives. Journal of Liquid Chromatography & Related Technologies, 20, 855–869. DOI: 10.1080/10826079708013658.

    Article  CAS  Google Scholar 

  • Bechet, I., Paques, P., Fillet, M., Hubert, P., & Crommen, J. (1995). Chiral separation of basic drugs by capillary zone electrophoresis with cyclodextrin additives. Electrophoresis, 15, 818–823. DOI: 10.1002/elps.11501501115.

    Article  Google Scholar 

  • Colera, M., Costero, A., Gaviña, P., & Gil, S. (2005). Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 16, 2673–2679. DOI: 10.1016/j.tetasy.2005.06.039.

    Article  CAS  Google Scholar 

  • De Camp, W. H. (1989). The FDA perspective on the development of stereoisomers. Chirality, 1, 2–6. DOI: 10.1002/chir.530010103.

    Article  Google Scholar 

  • Gratz, S. R., & Stalcup, A. M. (1998). Enantiomeric separations of terbutaline by CE with a sulfated β-cyclodextrin chiral selector: A quantitative binding study. Analytical Chemistry, 70, 5166–5171. DOI: 10.1021/ac980780i.

    Article  CAS  Google Scholar 

  • Hallett, A. J., Kwant, G. J., & de Vries, J. G. (2009). Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds. Chemistry — A European Journal, 15, 2111–2120. DOI: 10.1002/chem.200800797.

    Article  CAS  Google Scholar 

  • Hutt, A. J. (1991). Drug chirality: Impact on pharmaceutical regulation. Chirality, 3, 161–164. DOI: 10.1002/chir.530030 303.

    Article  CAS  Google Scholar 

  • Jiao, F. P., Chen, X. Q., Hu, W. G., Ning, F. R., & Huang, K. L. (2007). Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors. Chemial Papers, 61, 326–328. DOI: 10.2478/s11696-007-0041-4.

    Article  CAS  Google Scholar 

  • Kellner, K.-H., Blasch, A., Chmiel, H., Lämmerhofer, M., & Lindner, W. (1997). Enantioseparation of N-protected α-amino acid derivatives by liquid-liquid extraction technique employing stereoselective ion-pair formation with a carbamoylated quinine derivative. Chirality, 9, 268–273. DOI: 10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-L.

    Article  CAS  Google Scholar 

  • Keurentjes, J. T. F., Nabuurs, L. J. W. M., & Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-X.

    Article  CAS  Google Scholar 

  • Kim, K. H., Kim, D. S., Hong, S.-P., & Keon, O. S. (2000). Reversed-phase high performance liquid chromatographic separation of the enantiomers of terbutaline by derivatization with 2,3,4,6-tetra-o-acetyl-β-D-glucopyranosyl isothio cyanate. Archives of Pharmacal Research, 23, 26–30. DOI: 10.1007/BF02976461.

    Article  Google Scholar 

  • Kim, K. H., & Park, Y. H. (1998). Enantioselective inclusion between terbutaline enantiomers and hydroxypropyl-β-cyclodextrin. International Journal of Pharmaceutics, 175, 247–253. DOI: 10.1016/S0378-5173(98)00278-6.

    Article  Google Scholar 

  • Koska, J., & Haynes, C. A. (2001). Modelling multiple chemical equilbria in chiral partition systems. Chemical Engineering Science, 56, 5853–5864. DOI: 10.1016/S0009-2509(00)00419-X.

    Article  CAS  Google Scholar 

  • Liu, Y., You, C.-C., Wada, T., & Inoue, Y. (1999). Molecular recognition studies on supramolecular systems. 22. Size, shape, and chiral recognition of aliphatic alcohols by organoselenium-modified cyclodextrins. The Journal of Organic Chemistry, 64, 3630–3634. DOI: 10.1021/jo982483j.

    Article  CAS  Google Scholar 

  • Maier, N. M., Franco, P., & Lindner, W. (2001). Separation of enantiomers: needs, challenges, perspectives. Journal of Chromatography A, 906, 3–33. DOI: 10.1016/S0021-9673(00)00532-X.

    Article  CAS  Google Scholar 

  • O’Brien, T., Crocker, L., Thompson, R., Thompson, K., Toma, P. H., Conlon, D. A., Feibush, B., Moeder, C., Bicker, G., & Grinberg, N. (1997). Mechanistic aspects of chiral discrimination on modified cellulose. Analytical Chemistry, 69, 1999–2007. DOI: 10.1021/ac961241l.

    Article  Google Scholar 

  • Pietraszkiewicz, M., Koźbiał, M., & Pietraszkiewicz, O. (1998). Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from Dmannose. Journal of Membrane Science, 138, 109–113. DOI: 10.1016/S0376-7388(97)00218-4.

    Article  CAS  Google Scholar 

  • Prelog, V., Kovačević, M., & Egli, M. (1989). Lipophilic tartaric acid esters as enantioselective ionophores. Angewandte Chemie International Edition, 28, 1147–1152. DOI: 10.1002/anie.198911473.

    Article  Google Scholar 

  • Rekharsky, M. V., & Inoue, Y. (1998). Complexation thermodynamics of cyclodextrins. Chemical Reviews, 98, 1875–1918. DOI: 10.1021/cr970015o.

    Article  CAS  Google Scholar 

  • Rouhi, A. M. (2003). Chiral business. Chemical & Engineering News, 81, 45–55.

    Article  Google Scholar 

  • Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2006). Influence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether. Journal of Chemical Technology and Biotechnology, 81, 588–597. DOI: 10.1002/jctb.1434.

    Article  CAS  Google Scholar 

  • Schuur, B., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2010). Experimental and modeling studies on the enantioseparation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid-liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 65, 4682–4690. DOI: 10.1016/j.ces.2010.05.015.

    Article  CAS  Google Scholar 

  • Tan, B., Luo, G., & Wang, J. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021.

    Article  CAS  Google Scholar 

  • Tan, B., Luo, G., & Wang, J. (2006). Enantioseperation of amino acids by co-extractants with di(2-ethylhexyl)phosphoric acid and tartaric acid derivatives. Tetrahedron: Asymmetry, 17, 883–891. DOI: 10.1016/j.tetasy.2006.01.038.

    Article  CAS  Google Scholar 

  • Tang, K., Chen, Y., Huang, K., & Liu, J. (2007). Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 18, 2399–2408. DOI: 10.1016/j.tetasy.2007.09.031.

    Article  CAS  Google Scholar 

  • Tang, K., Chen, Y., & Liu, J. (2008). Resolution of zopiclone enantiomers by biphasic recognition chiral extraction. Separation and Purification Technology, 62, 681–686. DOI: 10.1016/j.seppur.2008.03.029.

    Article  CAS  Google Scholar 

  • Tang, K., Song, L., Liu, Y., Pan, Y., & Jiang, X. (2010). Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chemical Engineering Journal, 158, 411–417. DOI: 10.1016/j.cej.2010.01.009.

    Article  CAS  Google Scholar 

  • Tang, K., Yi, J., Liu, Y., Jiang, X., & Pan, Y. (2009). Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chemical Engineering Science, 64, 4081–4088. DOI: 10.1016/j.ces.2009.06.029.

    Article  CAS  Google Scholar 

  • Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., & Feringa, B. L. (2009). Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes. The Journal of Organic Chemistry, 74, 6526–6533. DOI: 10.1021/jo901002d.

    Article  CAS  Google Scholar 

  • Viegas, R. M. C., Afonso, C. A. M., Crespo, J. G., & Coelhoso, I. M. (2007). Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 53, 224–234. DOI: 10.1016/j.seppur.2006.07.010.

    Article  CAS  Google Scholar 

  • Wang, X., Zeng, H., Wei, Y., & Lin, J.-M. (2006). A reversible fluorescence sensor based on insoluble β-cyclodextrin polymer for direct determination of bisphenol A (BPA). Sensors and Actuators, B: Chemical, 114, 565–572. DOI: 10.1016/j.snb.2005.06.020.

    Article  Google Scholar 

  • Zhou, S., Ouyang, J., Baeyens, W. R. G., Zhao, H., & Yang, Y. (2006). Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-β-cyclodextrin as chiral selector. Journal of Chromatography A, 1130, 296–301. DOI: 10.1016/j.chroma.2006.05.055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewen Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, K., Zhang, P. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors. Chem. Pap. 65, 273–279 (2011). https://doi.org/10.2478/s11696-011-0011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0011-8

Keywords

Navigation